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The Butler model equation [1] – which allows to compute the surface tension of binary
and ternary solutions on the base of the surface tension data for the pure components, the
excess Gibbs free enthalpy of mixing as a function of the solution composition as well as on
the base of some assumptions made for the structure of the solution surface – has been used
mainly for metal solutions. For such solutions the model gave usually results, which agreed
well with the experimental data. The model requires some assumption as concerns the sur-
face phase coordination number. For ionic systems like, for instance, molten salts [2] or
molten oxides the application of the model is more complicated due to the ionic character of
those systems. Therefore, more input data has to be used there compared to metal systems.
First of all, one has to take into account the distance between ions either in the bulk and the
surface phase. For that kind of systems, the Butler classic formula must be modified into the
form given by [3], for instance. Another difficulty is due to the lack of reliable, high-tem-
perature data like the specific densities, the surface tensions, the excess Gibbs free enthalp-
ies of mixing and other specific surface parameters.

Due to the problems mentioned above, the Butler formula has been rarely applied to
the molten oxides of a slag character. There, it is to report such references like two papers of
Tanaka et al. [4] – for MnO-SiO2 and CaO-SiO2 systems based on the interaction parame-
ters of the cell model and [5] – for CaO-SiO2, FeO-Fe2O3, CaO-SiO2-FexO and CaO-SiO2-
Al2O3 systems with the thermodynamic data taken from the ChemSage data base.

In this work, a modified Butler model formula supplemented by the terms representing
the thermodynamic activity coefficients of the solution components was applied. The series
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expansions of Ban-ya [8] and Iwanciw [9] were used. The computations were done for liq-
uid MnO-SiO2 system and compared to the results of [4], and subsequently for MnO-Al2O3
and MnO-CaO systems.

�� ���������
���

The Butler model formula for binary solutions may be given as follows

ln ln
S S S S
A A B B

A BB B B B
A BA A B B

N NRT RT

A AN N

γ γσ = σ + = σ +
γ γ

(1)

where:
σ − the surface tension of the binary solution,
σi − the surface tension of the pure component i,
Ai − the surface area of the monomolecular layer formed from 1 mole of the compo-

nent i,
γi − the thermodynamic activity coefficient of the component i,
Ni − the mole fraction of the component i,

R, T − the gas constant and absolute temperature.

The upper index B denotes the bulk phase, while the index S – the surface phase.
The reference states for the activities are: a monomolecular layer of the pure compo-

nent i for S
ia  and the bulk phase of the pure component i for .B

ia
The surface area of 1 mole of the component i, Ai, is calculated provided a close-

packed mono-layer is being formed on the surface

1/ 3 2 / 3
i A iA L N V= ⋅ ⋅ (2)

where:
NA − Avogadro number,
Vi − molar volume of the pure component i,
L – a correction coefficient, whose numeric value depends on the structure of the

surface considered and is usually set for liquid metals as 1.091.

Due to a lack of reliable data, Tanaka et al. [4] applied L = 1 for molten salts and ionic
oxide solutions.

The formula (1) may be, for convenience reason, presented by a form, in which the
mixing Gibbs free enthalpy is divided into its perfect solution term and the excess term

}{

}{

, ,

, ,

1
ln ( , ) ( , )

1
ln ( , ) ( , )

S
E S S E B BA

A B BA AB
A AA

S
E S S E B BB

B B BB BB
B BB

NRT
G T N G T N

A AN

NRT
G T N G T N

A AN

σ = σ + + Δ − Δ =

= σ + + Δ − Δ

(3)
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where ,E S
iGΔ  and ,E B

iGΔ  are the excess partial mixing Gibbs free enthalpies for the com-
ponent i for the surface and the bulk phase, respectively.

As the dimensions of the ions considered differ from each other, Tanaka [2, 5] took it
into account by use of the ionic distances of the substances A (dA) and B (dB). The ionic
distance denoted by di, is the sum of the cation and anion radii in the considered salt or
oxide.

Finally, thus modified Butler formula may be given in a form

}{

}{

, ,

, ,

1
ln ( , ) ( , )

1
ln ( , ) ( , )

S
E S S E B BA

A B BA AB
A AA

S
E S S E B BB

B B BB BB
B BB

DRT
G T N G T N

A AD

DRT
G T N G T N

A AD

σ = σ + + Δ − Δ =

= σ + + Δ − Δ

(4)

where:

S S
S i i
i S S

j j

N d
D

N d
=

∑
   and   

B B
B i i
i B B

j j

N d
D

N d
=

∑
   for i =A or B.
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The partial excess mixing Gibbs free enthalpies of the components A and B in the bulk
phase are computed by use of the integral mixing Gibbs free enthalpy of one mole of solu-
tion, ΔGE, as a function of the solution chemical composition. However, a similar calcula-
tion of those quantities for the surface phase requires some additional assumptions. Thus, it
is assumed there, that the functional dependence of ΔGE is identical formally for either
phase, yet the numeric values of that quantity would be different for the phases in question.
In other words, for the hypothetical solutions of the same chemical composition, the differ-
ence mentioned above is due only to the different coordination numbers of the phases in
question as well as to the alterations of ionic distances in the surface layer resulting from
relaxation effects.

By application of Lumsden’s finding [6], that for the alkaline metal halides the mixing
enthalpy for binaries is proportional to the potential energy of mixing coming from nonpo-
lar London forces and the polarization energy, one may find for the partial excess mixing
Gibbs free enthalpy of the component i in the bulk phase (5) the followings

( ) ( )

2

, 2
2 2

( , ) (1 ) jE B B B B i
i ii

B B
i j

zz
G T N Z N

d d

⎛ ⎞
⎜ ⎟

Δ ∝ α − −⎜ ⎟
⎜ ⎟
⎝ ⎠

(5)

where:
α – polarizability,
Z – the coordination number,
zi – valence of cation i,
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and for the surface phase (6)

( ) ( )

2

, 2
2 2

( , ) ( ) (1 ) jE S S S S i
i ii

B B
i i j j

zz
G T N Z N

d d

⎛ ⎞
⎜ ⎟

′Δ ∝ α − −⎜ ⎟
⎜ ⎟ζ ζ⎝ ⎠

(6)

where:
(ZS)′ – an apparent coordination number in the surface phase,

ζ i – the ratio of the ionic distance in the surface layer to the one in the bulk phase, i.e.,

            / .S B
i i id dζ =

It is to be noticed, that ignoring of either the alteration of the coordination number or
the ionic distances, effected by surface relaxation, results in discrepancies between comput-
ed and experimental data.

Expression of the excess potential in the surface layer by a function of the one in
the bulk allowed Choi [3] to obtain the final form of Butler model for a binary oxide solu-
tion (7)

}{

}{

, ,

, ,

1
ln ( , ) ( ,

1
ln ( , ) ( , )

S
A E B S E B BA

A A B B BA AB
A AA

S
B E B S E B BB

B A B B BB BB
B BB

DRT
F G T N G T N

A AD

DRT
F G T N G T N

A AD

−

−

σ = σ + + ⋅ Δ − Δ =

= σ + + ⋅Δ − Δ

(7)

where:

( ) ( )

2

2 2

2

2 2

( ) ( ) ;

ji

i i j j
ji S S S S

i j i i j j i i j ji j

ji

i j

zz

d d
F F N N N N

zz

d d

− −

⎛ ⎞
⎜ ⎟

−⎜ ⎟
ζ⎜ ⎟ζ⎝ ⎠

= = β + β = β + β ⋅λ
⎛ ⎞
⎜ ⎟−
⎜ ⎟⎝ ⎠

λ – the fraction defined above; it depends on the alteration of the
ionic distances in the surface layer and in the bulk,

( ) /S B
i i iZ Z′β = 6 ���
 ����������
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The ratio of the surface coordination number to the bulk one, β, is related to the evap-
oration enthalpy ΔHv,i and to the surface tension of the considered substance σi by the for-
mula [4]

,(1 )i i i v iA Hσ = − β Δ (8)

Tanaka et al. [2, 4] determined the mean value of β from Εq. (8). For liquid halides of
alkaline metals, it is equal to 0.94. Metal oxides exhibit usually high temperatures of melt-
ing. Their evaporation enthalpies are not known in general. They might be computed possi-
bly as the difference between the sublimation enthalpy (if known) and the melting enthalpy
at melting temperature. One may use also the empirical relationship between the evapora-
tion enthalpy of salts and oxides and their melting temperatures, Tm, [3]

3
,5.02 10m v iT H−= ⋅ Δ (9)

Coupling Eq. (8) and Eq. (9) allows to determine β from the tangent of the plot σi = f (Tm/Ai).
Tanaka [4] examined relationships between the surface tensions data for different liquid
halides of alkaline metals, halides of bi- and tri-valent metals as well as molten metal oxides
and the ratio of the melting temperature and the mole surface of the substance in question.
For the all examined substances, which form liquid ionic solutions, the most adequate is the
mean value of β = 0.94, which was derived from the relationship of the evaporation enthal-
pies of halides. Choi [3] found another β using Eq. (8) and Eq. (9). The relevant β coeffi-
cients for calcium, silicon and aluminum oxides were, respectively, 0.92; 0.94 and 0.91.

The ζi – parameter defined as the ratio of the ionic distances in the surface to the ones
in the bulk was established theoretically for liquid sodium halide by Sawada and Nakamura
[7] to be 0.97. According to Tanaka et al. [2] that numeric value  – due to the lack of similar
data for other substances – may be adequate also for the other liquid ionic solutions such as
salts and metal oxides. The ζi – parameters found theoretically for silica, alumina and calcia
are equal to, respectively, 0.9755, 0.947 and 1.008 [3].
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The Butler model formula, modified by Choi et al. [3] was applied for computation of
the surface tensions of binary oxide systems: MnO-SiO2, MnO-CaO and MnO-Al2O3. The
essential data to make the computations are presented in Table 1.

The temperature surface tension relationships of single oxides presented in Table 1
indicate that the surface tension decreases with increasing temperature for CaO and Al2O3
contrary to SiO2. As the temperature dependence of MnO surface tension was lacking, the
numeric value of 630 mN/m was applied in the all calculations.
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The ratio of the ionic distance in the surface to the one in the bulk phase, ζi, was applied
always as 0.97, according to Sawada [7] for the all analysed oxides. However, in the latest
paper of Choi et al. [3], instead of the value 0.97, it was used 1.008, 0.947 and 0.9755 for,
respectively, CaO, AlO1,5 and SiO2. It was found that this differentiation indicates at elongation
of ionic distances for CaO in the surface layer, while contraction is observed for AlO1,5 and
SiO2. Due to the lack of the data for MnO, the value 1 was used by the authors of this work.

The partial excess mixing Gibbs free enthalpy data for individual components of the
considered solutions were those taken from Banya et al. [8] and Iwanciw [9] set on the base
of the regular solution model.

6 ���
��;-��;<

E �

������
��
�)��
�)
?7@:

2

, 2
( ),( ) ln 75000 42963 20 ,E B

MnO sMnO s SiOG RT N TΔ = γ = − ⋅ + − ⋅

22

, 2
,( ),( ) ln 75000 80000 30 ,E B

SiO s MnOSiO sG RT N TΔ = γ = − ⋅ + − ⋅

E �

������
��
F��-��
?5@:

2

, 2
( )( ) ln 75310 32470 26.143 ,E B

MnO sMnO s SiOG RT N TΔ = γ = − ⋅ − + ⋅

22

, 2
,( ),( ) ln 75310 27030 1.983 .E B

SiO s MnOSiO sG RT N TΔ = γ = − ⋅ + − ⋅

Vi σi   Tm βi ζi Oxide 

m3/mol mN/m Å K – – 

CaO 20.7⋅10–6[1+10–4(T–1773)]   
[3] 

645.2–0.097(T–2873) 
[3] 

2.4 
[3] 

2860 
0.9242 

[3] 
1.008 

[3] 

MnO 
15.6⋅10–6[1+10–4(T–1773)]   

[4] 
 

630 –Tm [4] 
(lack of temperature 

expansion) 
2.23 2058 

0.9176 
calculated 

from Eq. (8) 
and (9) 

Lack of 
data; 

ζMnO= 1.0 
was 

applied 

AlO1.5 
14.15⋅10–6[1+10–4(T–1773)]   

[3] 
 

721.2–0.078(T–2313) 
[3] 

1.93 
[3] 

2320 
0.9095 

[3] 
0.947 

SiO2 
27.516⋅10–6[1+10–4(T–1773)]  

[3] 
243.2+0.031T       

[3] 
1.63 
[3] 

1993 
0.9396 

[3] 
0.9755 

[3] 

	�





5>

6 ���
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E �
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��
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1.5

, 2
( )( ) ln 8000 42963 20 ,E B

MnO sMnO s AlOG RT N TΔ = γ = − ⋅ + − ⋅

1.51.5

, 2
( )( ) ln 8000 116208 50 .E B

AlO s MnOAlO sG RT N TΔ = γ = − ⋅ + − ⋅

6 ���
��;-3�;

E �

������
��
�)��
�)
?7@:

, 2
( ),( ) ln 12000 ,E B

MnO l CaOMnO lG RT NΔ = γ = − ⋅

, 2
,( ),( ) ln 12000 57763 20 .E B

CaO s MnOCaO sG RT N TΔ = γ = − ⋅ + − ⋅

E �

������
��
F��-��
?5@:

, 2
( )( ) ln 92050 86860 51.465 ,E B

MnO l CaOMnO lG RT N TΔ = γ = − ⋅ − + ⋅

, 2
,( ),( ) ln 92050 18160 23.309 .E B

CaO s MnOCaO sG RT N TΔ = γ = − ⋅ + − ⋅
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By solution of Eq. (7) the components contents in the surface layer were found, i.e., N S
A

and N S
B (with A denoting, respectively, AlO1.5, CaO or SiO2 while B – MnO), correspond-

ing to the components contents set for the bulk N B
A and N B

B.
A regression method of Newton was applied to solve Eq. (7). By denoting the diffe-

rences of the right sides of Eq. (7) by F(N S
A, N S

B), the approximated value of solution of
Eq. (7) N S

B,appr. was corrected according to Eq. (10)

( )
( )

, . , .
, .

, . , .

,

,

S S
A appr B apprS S

B B appr S S
A appr B appr

F N N
N N

F N N
= −

′
(10)

where:
N S

B,appr. – the approximated solution,
F ′ – the derivative related to B component, i.e., MnO in the surface phase.

For Eq. (7), the F ′ – derivative is given by Eq. (11)

2 2

( , ) 2

( ) ( )
( )

S S S S
S S A B A B
A B ABS S

B A B AB A

S S
AB A B B AB B A A

B A
B A

D D N NRT
F N N a

A A A AN N

a N b c T a N b c T

A A

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪′ = + −β⋅λ ⋅ − +⎨ ⎬ ⎨ ⎬
⋅ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎧ ⎫+ + + +⎪ ⎪+λ β −β ⋅ −⎨ ⎬
⎪ ⎪⎩ ⎭

(11)
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where:
λ and β – defined in Eq. (7);
aij, bi, ci – the coefficients of the partial excess mixing Gibbs free enthalpy by the

regular model approximation for i component

                     2ln .E
i i ij j i iG RT a N b c TΔ = γ = + + ⋅

Usually, only 3 iterations are needed in order to obtain a sufficient equity of the equa-
tion sides with a desired accuracy. The found numeric data of N S

B were used subsequently
for calculations of the surface tensions for the solutions with a set MnO content. The calcu-
lated results for MnO-SiO2 were compared to the experimental ones as well as to those of
Tanaka et al. [4]. In his calculations Tanaka used the mean value of β for each oxide equal to
0.94 as well as the constant relaxation coefficient ζ = 0.97. The numeric values of the excess
functions for solution components Tanaka [4] took from the cell model.

The results of the calculations made by the authors of this work are presented in Tables
2, 3, 4 and 5 and Figures 1, 2 and 3. In the plots there are given also the miscibility gaps for
the analysed systems [10].

In Table 2 and Figure 1, the computed results for MnO-SiO2 at 1843 K are compared
– following the expansions for the activity coefficients of oxides proposed in [8] and [9]
– to the ones given in [4]. In Table 3 and Figure 2 are presented the calculated data for
MnO-SiO2 but at 1990 K. In Figures 2 and 3, there is not given any comparison to the
experimental data as the latter are lacking.
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H
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Mole fraction 
of SiO2 in the 

bulk phase 

Results calculated  
by Tanaka et al. [4] 

This work, using 
ln iRT γ relations  

by  Ban-ya [8] 

This work, using 
ln iRT γ relations  

by  Iwanciw [9] 

2SiON  
� 

2

S
SiON  � 

2

S
SiON  � 

2

S
SiON  

– mN/m –
 

mN/m –
 

mN/m –
 

0.25 – – – – 502.7±2.3 0.361 

0.30 505 0.362 – – 483.6±3.2 0.393 

0.35 485 0.426 471.6±3.4 0.461 466.3±1.5 0.453 

0.40 561 0.518 454.9±0.7 0.501 450.3±1.2 0.493 

0.43 444 0.622 446.3±4.0 0.520 440.3±2.9 0.529 

0.45 – – 439.6±1.0 0.544 435.7±3.2 0.536 

0.50 – – 425.3±2.1 0.588 422.2±4.2 0.581 

0.55 – – 411.9±2.4 0.633 – – 
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	 A

B

C

MnO-SiO2
  1843K

experim
ental

c a lcu la te d resu lts
  A           [4 ]
  B           th is  w or k 
  C           th is w o rk   
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Mole fraction  
of SiO2 in the  

bulk phase 

This work, using  
ln iRT γ relations  

by  Ban-ya [8] 

This work, using 
ln iRT γ relations  

by  Iwanciw [9] 

2SiON  � 
2

S
SiON  � 

2

S
SiON  

– mN/m –
 

mN/m –
 

0.15 –
 

–
 

543.5±2.4 0.261 

0.20 –
 

–
 

520.5±1.7 0.294 

0.25 –
 

–
 

500.7±1.6 0.346 

0.30 –
 

–
 

482.5±1.1 0.402 

0.35 –
 

–
 

465.3±3.1 0.440 

0.40 459.8±2.0 0.503 448.6±2.6 0.499 

0.45 444.3±0.1 0.545 433.8±0.6 0.541 

0.50 429.9±1.1 0.589 420.1±0.6 0.584 

0.55 416.4±1.5 0.634 407.2±1.1 0.629 

0.60 –
 

–
 

395.1±1.0 0.674 
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In Table 4 and Figure 3. are presented the results for MnO-Al2O3 following the activity
coefficient of Iwanciw [9].
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  1990K

B

C
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Mole fraction  
of AlO1.5 in the  

bulk phase 

Mole fraction  
of Al2O3 in the  

bulk phase 

This work, using  
ln iRT γ relations  

by  Iwanciw [9] 

1.5AlON  
2 3Al ON  � 

1.5

S
AlON  

– – mN/m –
 

0.15 0.081 658.9±0.6 0.110 

0.20 0.111 666.5±2.9 0.152 

0.25 0.143 668.4±3.2 0.182 

0.30 0.176 679±2.8 0.233 

0.35 0.212 685.1±1.4 0.272 

0.40 0.250 691.4±0.7 0.309 

0.45 0.290 700.1±1.1 0.357 

0.50 0.333 708.6±1.7 0.403 
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For MnO-CaO at temp. 2473 K, the calculated results are presented in Table 5 for
Iwanciw [9] expansion. The expansions of Ban-ya [8] cannot not be used in the concentra-
tion range of liquid condition. It is the most difficult system for reproduction due to very
high temperature.
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Mole fraction  
of CaO in the  

bulk phase 

This work, using  
ln iRT γ relations  

by  Iwanciw [9] 

CaON  � S
CaON  

– mN/m – 

0.10 632.6±4.1 0.083 

0.15 637.2±2.3 0.128 

0.20 640.6±2.2 0.173 

0.25 643.6±2.8 0.217 

0.30 648.6±1.3 0.272 
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The results obtained in this work allow for the final conclusions:
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