ELEKTROTECHNIKA I ELEKTRONIKA
TOM 24. ZESZYT 1, 2005

Michat WIDLOK "

ICSP PROGRAMMER CONTROLLED WITH REAL-TIME
OPERATION SYSTEM FROM PC PARALLEL PORT

SUMMARY

Many of new programmable ICs like micro-controllers, PLDs and other devices feature some kind of ICSP (In
Circuit Serial Programming) standard. Such devices can be programmed, reprogrammed or checked while solde-
red in the application circuit, using only a few lines and a special connector. This technology is very useful for
the designer, however each manufacturer uses it's own ICSP standard and dedicated programming device. This
means that sometimes even a single application need a few different programmers and connectors. To overcome
this problems a single very universal ICSP programmer was build.

The article presents software driver and hardware implementation of the proposed programmer. To reduce design
time very simple hardware was chosen — programmer does not have any “build in” intelligence and places all
control tasks on the PC and software. Block schematic and a description of the modules and their connections is
presented. To enable fast data transmission rate and provide good time resolution a hard real-time operation sys-
tems is needed. The sofiware driver is written under ONX — very fast, reliable and well known OS. Description
and general algorithm of the software driver and library is given. While ICSP programming is the main task, pro-
grammer also can be used as a digital I/O device for a PC. During about 2 years of use many communication
protocols was implemented, not only for ICSP programming but also for debugging, control or testing of other
applications. Concurrently author is working on RTAI Linux driver for the programmer to enable using it under
that platform.

Keywords: ICSP programmer, real-time, software driver, QNX

PROGRAMATOR ICSP STEROWANY PRZEZ SYSTEM CZASU RZECZYWISTEGO
Z ROWNOLEGEEGO PORTU KOMPUTERA PC

Wiele nowych programowalnych uktadow scalonych jak mikrokontrolery, uktady PLD i inne posiada mechanizm
ICSP (In Circuit Serial Programming — programowanie szeregowe wewnaqtrz uktadu). Ukiady te mogq by¢ progra-
mowane i testowane, gdy juz sq wlutowane w docelowy obwdd. Przewaznie potrzeba do tego kilku linii i specjal-
nej wtyczki. Ta technologia jest bardzo uzyteczna dla projektanta, ale kazdy producent posiada swoj standard
ICSP i dedykowany programator. To oznacza, zZe niekiedy nawet pojedyncza aplikacja wymaga kilku roznych pro-
gramatorow i tqczowek. Aby temu zaradzié, zaprojektowany i zbudowany zostal uniwersalny programator ICSP.

W artykule przedstawiono programowy sterownik i sprzetowy ukiad programatora. Aby skrocic¢ czas projektowania
urzqdzenia, zdecydowano sie na prosty uklad sprzetowy — programator nie posiada wiasnej , inteligencji”,
a wszystkie zadania sterowania muszq byc¢ zrealizowane przez program. Zostal przedstawiony schemat blokowy
i opis wszystkich blokow oraz ich polqczen. Aby umozliwi¢ odpowiednio szybkq transmisje danych i dobrq roz-
dzielczoS¢ czasowq, wymagany jest system operacyjny czasu rzeczywistego. Sterownik zostal napisany pod ONX
— bardzo szybki, pewny i znany system operacyjny. W artykule zostaly zamieszczony opis i algorytmy dziatania ste-
rownika oraz biblioteki funkcji uzytkownika. Mimo iz programowanie ICSP bylo glownym zadaniem, programator
moze rowniez zostac¢ uzyty jako cyfrowe urzqdzenie wejscia/wyjscia dla komputera PC. Przez prawie dwa lata
uzytkowania wiele protokotow komunikacji zostato zaimplementowanych nie tylko dla programowania ICSP, ale
tez dla testowania i kontroli roznych aplikacji. Obecnie autor pracuje nad sterownikiem do programatora dla sys-
temu Linux.

Stowa kluczowe: programator ICSP, czas rzeczywisty, sterownik programowy, ONX

1. INTRODUCTION

Most of the new programmable integrated circuits have
some form of In-Circuit Serial Programming (ICSP) inter-
face. This enables designer and manufacturer to quickly test
new firmware for the application without any hardware
changes. Typically during application design, a special
service connector is provided to program and test micro-
-controllers and other programmable devices on the board.

With such connector the application can be programmed,
tested or reprogrammed even directly at the customer’s
home. However there is no single standard for ICSP interfa-
ce. Almost every manufacturer has it’s own specification
for ICSP capable devices and provides dedicated program-
ming hardware. Frequently even the same manufacturer has
a few different programmers for different chip families.
This is acceptable for mass production, but rather proble-
matic for designing and prototyping. The main problem is

* Studia doktoranckie, EAIiE, Katedra Autom. Napedu i Urzadzen Przemystowych

106



ELEKTROTECHNIKA I ELEKTRONIKA TOM 24. ZESZYT 1, 2005

that such dedicated programmers are suitable only for
single task — programming or testing. This means that desi-
gner have to have a lot of different devices, that often can
not be connected to the PC at the same time, and that need
a lot of different driver software. Sometimes these drivers
uses incompatible input files format that creates further
complication.

To overcome this problems and to test real-time capabili-
ties of current PCs the new universal ICSP programmer was
designed and build. In the begging, idea was to build single
device that can program many different micro-controllers
(MicroChip’s PIC mostly) and other programmable ICs.
However, during designing of driver software it was clear
that it can be made to support many different communica-
tion standards like SPI, 12C, JTAG or RS232. It was also
possible to create a simple digital recorder with moderate
sampling rate. Such characteristic makes possible to use the
programmer as an application debugger or tester, making it
a very universal and handy device. Author uses it for about
2 years with very good results, for programming, testing
and debugging his designs. This paper presents the con-
struction and software implementation of the programmer
and some test that was carried over.

2. BASIC ICSP REQUIREMENTS

ICSP usually does not need very high transmission rates
however, time relation or signal sequences are often very
strictly defined. Typically the start-up sequence or program-
ming pulses times and delays are specified within 10-50 ps.
Following this is guidelines is very important because it is
quite easy to destroy programmed device in milliseconds.
This is especially true for EEPROM or EPROM ICs becau-
se they are sensitive to programming pulses. FLASH ICs
are much more robust. This means that every universal pro-
gramming device should be able to give microseconds
accuracy and should be very reliable. As was mentioned

earlier, data transmission is not critical but it is also desira-
ble to reduce programming time. If FLASH memory of sin-
gle modern micro-controller is about 100 kB then program-
mer have to transmit this amount of data plus any overhead
like setting up programming pulses and so on. To reduce
this time to about 10-15 seconds (value acceptable for
a designer waiting for it) transmission speed should be at
least 8—10 kB/s. This means that the clock should be at abo-
ut 80 kHz however the more the better. ICSP devices usual-
ly allows much faster transfer rate.

If the programmer is also supposed to service as applica-
tion debugger or digital recorder then it is clear that the ti-
me resolution should be 2—5pus and clock frequency above
100 kHz is required. It might be seemed not very hard to
reach but we have take into account that different and some-
times not standard protocols have to be realized. Because of
this it is impossible to use typical dedicated ICs to do the
task. Also there should be possibility to configure lines as
inputs or outputs on the fly, and to provide high power/high
voltage outputs. Very desirable is also adjustable power
supply and possibly a simple hardware. Finally (after a few
tries) all this goals were met.

3. CHOOSING OF HARDWARE
AND SOFTWARE PLATFORMS

3.1. Programmer hardware

To cut costs and design time very simple hardware platform
was chosen. It is clear that this will cause very high load on
control PC’s processor especially during high frequency
transmitting or receiving. The block diagram of the pro-
grammer is shown on Figure 1. The programmer has 3 con-
figurable input or output lines with TTL signal levels,
3 output/high impedance TTL lines, 2 high voltage outputs
(regulated 1.2—-15V, 200 mA) and regulated 1.2—7 V power
supply. Voltage regulator is short-circuit protected and has
1 A current capability.

- e -
|
Y ! Digital
! IMNAOUT T 3.4 lines Prograrmmed
8 Lined N Device
= (UC, GAL)

PC with QMNX

L

Regulated
Opticnal power supply
Paower 1.2-7

ICSP Programmer

L

Fig. 1. ICSP Programmer block diagram

107



Michal WIDLOK

ICSP PROGRAMMER CONTROLLED WITH REAL-TIME OPERATION SYSTEM...

The programmer consists of digital Input/Output block,
high voltage lines amplifier and regulated power supply.
I/O block is build over single programmable IC — Lattice
GAL22V10. This device is fast, has high power TTL out-
puts, and is very easily to configure it for given tasks. As
high power output block an ICL7667 dual amplifier was
used to convert TTL signals from PC to 15 V/200 mA out-
puts. An application power supply block consists an inte-
grated voltage regulator with short circuit and over tempe-
rature protection. All of the blocks are connected to PC
standard parallel port (Centronics).

This port was chosen because:

— most PCs and Laptops have it,

— it is very easy to configure and program it,

— it does not need any special hardware to work,

— it is quite robust,

— cables or other hardware is not critical for proper opera-
tion.

The programmer uses 20 pins connector and dedicated
cable as a target application connection. Programmer needs
its own power supply (8—15 V, 1.5 A maximum) for opera-
tion. It was build in that way to enable powering it directly
from control PC (its 12 V power line). However if accurate
high voltages are needed it is necessary to use dedicated
stabilized power supply, that also was build.

3.2. Control software

Programmer locates all control tasks on PC. Such imple-
mentation is very universal and almost all interface stan-
dards can be realized with appropriate driver software. Ho-

wever it is clear that to meet needed performance a high
quality real-time operation system and driver is essential.
It is important that soft real-time is not enough because
deadlines and jitter have to kept below certain values all the
time. Software failure can lead to destruction of the pro-
grammed device or meaningless received data. To meet the-
se goals QNX was chosen as the operating system. It is very
fast, reliable, easy to configure and it was well know by the
author. It is not recommended to write real-time control pro-
grams under Windows even if it is well know for most users
and very popular, because of hard real time demands during
programming procedure realization Not many computer
have QNX installed, so using the programmer out of the
laboratory or without dedicated notebook is problematic.
Concurrently work is in progress to port all the software to
RTAI Linux, that will achieve similar performance but the
driver is not ready yet.

4. SOFTWARE DRIVER
IMPLEMENTATION DETAILS

4.1. General overview

Control software was written in C — very popular and wide-
ly known language. The driver is implemented as a library
of functions rather then stand alone program. Such configu-
ration was chosen because it gives the best control of the
programmer’s hardware, it is very universal and it is easy to
add new protocols or functions without any changes to the
existing programs. Functions was grouped in the modules
by category.

Table 1
Library modules and functions

Module Functions names

Description

icsp_prog_hw SSPinit(), PROGinit(), LEDblink(),

PROGtest()

Hardware and programmer specific functions. Mostly used
in other modules

icsp_prog_date | SetDir(), SetHV(), SetData(), GetData()

Direct I/O access functions. Also allow set up direction
of programmable lines

icsp_prog RO

WriteRO(), ReadRO(), SetREN()

Registered (output only) lines direct access

icsp_prog_tsc

Delayus(), waitus(), ticus(), tocus(), Initus()

Provide TSC counter access and time measuring. All arguments
are in micro seconds

icsp_hex_com,
icsp_hex 132

Ld Hex F(), Wr_Hex_F(), CompHEXI32(),
ScanHexI32(), PrintHexI32()

Allows loading and analyzing files in IntelHEX format. Such files
are commonly used in programming tools for micro controllers

icsp_JEDEC

Ld_Jedec_F(), Wr_Jedec_F(),
CompJEDEC(), DispJEDEC()

As above, but for JEDEC files. This format if used for JTAG devices

icsp_prog_sclk

SendSClock(), SendSData(), ReceiveSDate()

Data synchronous transmission with additional clock output.
PIC17C756 requires such clock

icsp_prog_serc

SendClock(), SendData(), ReceiveData()

Synchronous (SPI) data transmission functions — Master mode

icSp_prog_sers

SendDataSl(), ReceiveDataSI()

Synchronous (SPI) data transmission functions — Slave mode

icsp_prog_asyn

SendAsynClock(), SendAsynData(),
ReceiveAsynData()

Asynchronous data transmission functions. Uses RS232 format

icsp_MI2C SendI2CData(), Receivel2CData() 12C transmission — single master mode

icsp_JTAG ReserJTAG(), GoJTAG _xxxx(), JTAG interface communication functions. GoJATG_xx functions
SendJTAG(), ReceiveJTAG() family set the JTAG “state machine” to given state

icsp_scope SampCHO2(), SampTrig() Digital recorder functions. Allows additional recording

control like trigger or delay

108




ELEKTROTECHNIKA I ELEKTRONIKA TOM 24. ZESZYT 1, 2005

Table 1 shows most important functions and categories.

The table lists only most important functions. Whole li-
brary consist of 17 modules 16 header files and over 60
functions, plus some “inline” functions, that are not acce-
ssible for the user. As shown in the table many common
communication standards and file formats are implement
already. Functions also can be used to directly control pro-
grammer’s lines. All of the functions can be used directly in
any QNX program. It can be seen that by using the library it
is very easy to load files in different formats and then send
or receive application data. All parameters like speed, pola-
rity, protocol or format can be changed on the fly in very
short time — very useful for debugging.

4.2. Time and frequency measurement system

As was stated before time resolution and accuracy of micro
seconds is needed to meet the ICSP programming specifica-
tions of some chips. Such short response time and low jitter
is quite difficult to achieve even for hard real-time operation
systems. QNX (and RTAI Linux) running on modern PCs
however can meet such requirements. For QNX the easiest
way was to disable all interrupts during critical time.
To accurately measure time TSC (Time Stamp Counter) —
64 bits counter presented on every new PC processor was
used. This counter is incremented at every clock cycle, so it
is enough to know the frequency of the processor to measu-
re the time. For testing 1.7 GHz Pentium 4 was used, how-
ever Pentium running on Intel main-board is not the best
choice for real-time use. Most of this boards have SMI
(System Management Interrupt) “feature” — an interrupt
that is called by system controller every few seconds. This
is completely invisible for the software and OS, so it is im-
possible to block it in typical way. This can cause occasio-
nal jitter of several hundreds of micro seconds. It is someti-
mes possible to disable SMI by writing to main-board regi-
sters, but it is system depended and usually not documented
anywhere. Unfortunately only that PC was available at that
time. With 1.7 GHz clock it is theoretically possible to me-
asure about 7 ns, but realistically this value is much longer
i.e. about 0.7 us. This is cause mostly by long time needed to
access 1/O ports. The other problem is how long time can be
measured in that way. TCS is 64 bits in nature, but to speed
up operations typically only 32 bits are used, how-ever func-
tions for full 64 bits access are also provided. To give a good
overview of possible measurement range for 32 and 64 bits
counter the maximum available time is computed:

— for 32 bits

1 3y 4294967296
e = 2 =
1.7 GHz 1700000000

— for 64 bits

= 2.5 seconds;

1 64 10
T =—— 2" =1.08%10"" seconds =
M 1.7 GHz

~125590.58 days =~ 344 years.

It is clear that even 32 bits counter should be sufficient
for most of the time, but if one use 64 bits counter the me-

asurement range is many times longer then the lifetime of
typical PC.

4.3. Flowchart of typical program

Flowchart of programming typical ICSP device is shown on
Figure 2 below.

Start

v

Load input
files

2

Set up device

and programrmer

-

Program Set
rmemory cell MNext location

Al done?

Yes

Turm of device
and programimer

Fig. 2. Example ICSP device programming flowchart

Generally many devices can be programmed in the way
shown on Figure 2. It can be seen that only device specific
parts have to be realized by the application programmer. All
other tasks can be done by using available library functions.
One possible problem with such implementation is that eve-
ry new micro-controller or any other programmed device
must have it’s own “driver” made of library functions and
some device specific code. However (as author’s experien-
ce shows) it is really easy to add new drivers. Typically it
can be done simply by following manufacturer’s program-
ming specification manual for given device. If new one is
similar to other, already implemented, all operation is redu-
ced to changing programming pulses length, memory limits
and transmission frequency.

5. CARRIED TESTS AND ACHIEVED RESULTS

To reduce risk of damaging programmed ICs (that someti-
mes was really expensive), a lot of test has been done on the
programmer. Most important is to minimize probability of
program crash or hard look-up. Such events can leave the
programmer in totally unknown and possibly danger state.
Any program or device error should instantly trigger the
shut down of high voltage lines and switch all lines to ‘in-
put’ or ‘high impedance’ state. This might screw-up pro-
gram loaded to device, but will rather not destroy it. In fact

109



Michal WIDLOK

ICSP PROGRAMMER CONTROLLED WITH REAL-TIME OPERATION SYSTEM...

to give the user additional control of the programmer beha-
vior all library routines call user specified “error function”
in every unusual condition. That function should be set in
the begging of the driver. If not specified a default function
will be used that turn off all programmer’s lines. This was
found to be the most safe for programmed devices. Anyway
during 2 years of use only one micro-controller was dama-
ged, and this was happen not because of programmer fault
but because of misunderstanding of programming specifi-
cation by the author. Fortunately todays real-time operating
systems like QNX or RTAI Linux are very robust and error
caused by look-up of the OS was never noticed. User should
however keep in mind the special nature of some computer
main-boards or processors. For example it was not possible
to catch SMI on Intel system on the scope connected to pro-
grammer outputs, but this not mean that it could not happen
during programming. A special real time test programs are
recommended to check how the PC and OS work with real
time applications before any programming is done. For
example RTAI Linux has very good calibration and testing
utility included.

During testing a lot of different test were done. Most
important results are presented below. All this tests were
done with the programmer connected to 1.7 GHz Pentium 4
running QNX and were recorded by digital oscilloscope.
It should be noted that this system suffers from SMI, but
fortunately such event never show up during tests. Concur-
rently programmer is used with AMD notebook with very
similar performance. Most important results are presented
below.

5.1. Maximum frequency synchronous transmission

During this test arbitrary data was sent by the programmer
output lines. Figure 3 presents data and clock lines wave-
forms. Synchronous transmission is much more sensitive
for edge timing then for clock time or frequency.

As can be seen on the above figure jitter is very low (im-
possible to measure with used equipment) and data line is
set always on the rising clock edge. Achieved frequency
was 380 kHz, however typically (during normal program-
ming) the frequency is lower — experimental value is about
200 kHz. This is caused mostly be overhead imposed by
programmed device protocol, needed set up or programmed
device limitations.

5.2. Asynchronous data transmission — jitter test

Asynchronous data transmission is quite sensitive to the fre-
quency jitter, while transfer rate is less important. The most
popular baud rate is 9600 bits/second used by many
RS232C devices — printers, plotters, modems and so on.
This test was done to check if jitter imposed by the pro-
grammer is not to high. As above arbitrary data was send
and output was recorded on the scope. The clock signal is
a special “helper” line not used by the applications but pro-
vided by the programmer.

Figure 4 shows the results. Frequency jitter was very low
— it is impossible to see it on the figure, while measured
value (using Octave — Linux version of Matlab) was about
0.7 us. This value is many times lower then needed — RS232
can tolerate up to 10-15%.

5.3. Response time for external events

While receiving data (asynchronous especially) it is impor-
tant that reaction time for transmitter edge is short. If this
time would to long the receiver will not synchronize it’s
clock correctly and error can occur. To check programmer
reaction time an rising edge was send to the input line and
programmer was set to start receive data on that edge. The
results are shown on Figure 5. Top waveform is the trigge-
ring line, wile bottom is the additional clock signal delive-
red by the programmer.

Clk Dat

T T T

' ' '
________ Y A

' ' '

' ' '

' '

5.0 53

Tls] =

Fig. 3. Maximum frequency synchronous transmission

110



ELEKTROTECHNIKA I ELEKTRONIKA TOM 24. ZESZYT 1, 2005

T T
e T :
™ . .
D 1 1
__________ -L—A‘.__mr__l:".—‘.'r:‘i“!__n‘:d'_ - I T RN I —
2 .
o :
[t - -'-w--"v-—"-v-';-r--m--m--rv—---w--vcn' e e
F = 9200Hz :
i i
0 0.5 1 1.5
Tlsl w10
Fig. 4. Asynchronous transmission
T T T T T T T T
=
O
=
O

w1

Fig. 5. Reaction time for external event

It can be seen that reaction time is very short. Internal
programmer trigger occurs only 2.58 ps after the rising
edge. This time is much shorter then needed for most cases
(acceptable value is about 200 pus), and it was never a pro-
blem during normal use. If someone examine clock signal
closely he/she will find that the first clock period is longer
then others. This is not the mistake but the required syn-
chronization for asynchronous data format. The first sent bit
is always a “start bit” then data bits follow it. Then pro-

grammer waits during start bit time plus % of the next bit
time — this gives the best sampling time occurring in the
middle of the transmitted bit.

6. EXAMPLES OF SUCCESSFUL APPLICATION
OF THE PROGRAMMER

The programmer was generally intended to be a very uni-
versal replacement for commercial programming devices.
However it was often clear that much other tasks can be

111



Michal WIDLOK

ICSP PROGRAMMER CONTROLLED WITH REAL-TIME OPERATION SYSTEM...

done if we treat it as a programmable digital I/O for the PC
with a good and fast driver. Some examples of successful
applications are presented below.

6.1. Debugger for micro controller
and other applications

Many applications designed today (and all designed by the
author) have some form of debugging or “service” connec-
tor. This is usually a small plug that can be used for applica-
tion testing, reprogramming of the processor or other tasks.
This greatly simplifies debugging process. Up to now about
15 different projects were debugged this way. Often it was
even possible to find hardware faults (bad connection, da-
maged output MOSFET) without using the voltmeter or
oscilloscope. It is clear that additional work that have to be
done to provide “service” connector and driver software
will pay off during debugging phase.

6.2. RF receiver/transmitter

This was done by connecting Links RF modules to the pro-
grammer. General idea was to test the range and transmis-
sion error rate of the modules in building environment. PC
(or driver) was set up to constantly send and receive a “pac-
ked” of known data. The other end was equipped with the
same Links modules and PIC micro-controller (final appli-
cation) that was moved around the building. At the end log
files on the PC could be examined and it was possible to
find out where the error rate is to high or the average range.

6.3. Peltier module controller
and temperature regulator

During this project a laser diode temperature controller was
build. The programmer was connected to DS1820 tempera-
ture sensor (One Wire interface) and to power amplifier
that provided 12 V, 2 A bipolar supply for Peltier module.
Cooling or heating power was regulated by PWM drive. In
PC a PID controller was realized with the possibility of
changing P, I or D factors on the fly. Reference temperatu-
re was set up form keyboard, and the regulation algorithm
could be started. PWM frequency was about 10 Hz — more
then needed, and the temperature could be stabilized to abo-
ut 10 percent. This is not very accurate but mostly the limi-
ting factor was a temperature meter. It was not possible to
make a good “thermal connection” between the meter and
the diode, and the accuracy of the meter (not intended for
such use) was low.

The above are only a few examples of possible program-
mer uses. Generally it can be seen as quite fast reliable digi-
tal input/output module with nice features like integrated
power supply or high power output lines. It is interesting
that so small and simple device can serve so many diffe-
rent functions — and only a good OS and software driver is
needed. This is very good example of how fast new PC
computer is. Unfortunately most of the popular software
that is used today does not have ability to use real time capa-
bilities of the hardware. Many commercial manufacturers
(even those well know) does not even try to provide optimi-

zed drivers for their equipment, simply calling for a faster
PCs, that often can not overcome some basic faults and sim-
plifications in the drivers.

7. SUMMARY

Carried tests and application examples shows that presented
programmer and it’s controlling software is very handy and
useful debugging tool. Almost every project that is equip-
ped with TTL service port can be debugged or tested by
using a PC — all results are directly presented on the screen
and all parameters can be altered from keyboard. In addition
the hardware is cheap and easy to fix when some damage
occurs (up to now only 2 faults were noticed).

Generally the programmer can by characterized by:

— very simple hardware design,

— parallel port (Centronics) connection to the PC,

— special software driver and library functions that uses
real time operating system running on PC,

— very robust hardware and software design to minimize
the risk of damaging programmed ICs,

— provided library simplifies new protocols design and
new standards addition — often it is enough to set pulses
lengths or polarity,

— uUse of QNX or RTAI Linux minimize risk of software
crash — and unknown consequences for programmed
ICs.

Original driver was written for QNX, but implementa-
tion for RTAI Linux is concurrently in progress. Linux pro-
grams for almost all tasks were written and they are typical-
ly well maintained by the authors.

References

[1] Mielczarek W.: Szeregowe interfejsy cyfrowe. Gliwice, Helion 1993

[2] Intel: Designing for On-Board Programming Using the IEEE 1149.1
(JTAG) Access Port. Application Note AP-630. Intel, 1996

[3] Altera: IEEE1149.1Boundary Scan Testing in ALTERA Devices. AL-
TERA, 2000, www.altera.com

[4] Microchip: In Circuit Serial Programming (ICSP) Guide. Microchip
Technology Inc., 2000, www.microchip.com

[5] Kernighan B.W., Ritchie D.M.: Jezyk ANSI C. Warszawa, WNT 1998

[6] Metzger P.: Anatomia PC. Gliwice, Helion 1993

[7] QNX Software System: ONX Operating System, System Architectu-
re. QNX Software System 1997, www.qnx.com

Wptyngto: 6.03.2005

Michal Adam WIDLOK

Was born in 1979 in Krakéw, Poland. He received M.Sc.
degree in electrical engineering from the University of
Science and Technology in Krakéw on the subject “Testing
and analysis of high speed interfaces with specially desi-
gned ICSP programming device” in 2003.Actually he is on
the second year of Ph.D. Studies on AGH University of
Science and Technology in Krakov. His research directions
are power electronics and micro-controller control systems.

e-mail: widlok@uci.agh.edu.pl

112



