PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mikrostruktura i właściwości elektryczne materiałów kompozytowych w układzie interkonektor/katoda/elektrolit do zastosowania w protonowych stało-tlenkowych ogniwach paliwowych typu SOFC-H+

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Microstructure and electrical properties of composite materials in the interconnect/cathode/electrolyte system for protonic solid oxide fuel cell (SOFC-H+) applications
Języki publikacji
PL
Abstrakty
PL
Opracowanie technologii wytwarzania metalicznych interkonektorów do protonowych stało-tlenkowych ogniw paliwowych SOFC-H+ na bazie stali ferrytycznych wymaga długoczasowych badań chemicznej kompatybilności układu interkonektor/katoda/elektrolit. W charakterze interkonektora zastosowano stal Crofer 22 APU, na który nanoszono metodą sitodruku warstwę katody La0,6Sr0,4Co0,8Fe0,2O3-d (LSCF48) oraz kolejną warstwę złożoną z protonowego elektrolitu stałego. Do badań wytypowano elektrolity na osnowie ceranu baru i ceranu strontu domieszkowanych Nd, Sm, Dy, Yb i Y. Jedynie kompozyty Crofer 22 APU/LSCF48/BaCe(1-x)MxO3-x/2, gdzie M = Nd, Sm i Dy wykazywały chemiczną stabilność po utlenianiu w 1073 K przez 150 godz. w powietrzu. Analizę reakcji wzajemnego oddziaływania warstw z podłożem przeprowadzono przy pomocy skaningowej mikroskopii elektronowej połączonej z dyspersją energii promieniowania rentgenowskiego. W oparciu o pomiary rezystancji elektrycznej próbek metodą spektroskopii impedancyjnej przedyskutowano wpływ domieszkowania elektrolitu stałego na właściwości fizykochemiczne badanych kompozytów i na tej podstawie określono ich przydatność do konstrukcji ogniwa paliwowego SOFC-H+.
EN
In order to develop fabrication technology of metallic interconnects based on stainless ferritic steels for protonic solid oxide fuel cells (SOFC-H+) the long-term compatibility of the interconnect/cathode/electrolyte system must be studied. Crofer 22 APU was used as the metallic interconnect, onto which a La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF48) cathode layer was screen-printed. In turn, another layer, consisting of a protonic solid electrolyte, was screen-printed on the LSCF48 cathode layer. In this research, barium cerate and strontium cerate based compounds doped with Nd, Sm, Dy, Yb and Y were used as the solid electrolytes. Only the Crofer 22 APU/LSCF48/BaCe(1-x)MxO3-x/2 (where: M = Nd, Sm i Dy) composites were found to be chemically stable after oxidation at 1073 K for 150 hrs in air. The analysis of the interaction between the oxide layers and the steel substrate was carried out using scanning electron microscopy combined with energy dispersion spectroscopy. The influence of solid electrolyte doping on the physicochemical properties of the system was discussed on the basis of electrical resistance measurements of the studied samples using impedance spectroscopy. From the results, the applicability of the composites for the construction of a SOFC-H+ fuel cell was determined.
Rocznik
Strony
423--432
Opis fizyczny
Bibliogr. 34, rys., wykr.
Twórcy
autor
autor
autor
autor
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. Mickiewicza 30, 30-059 Kraków, brylew@agh.edu.pl
Bibliografia
  • [1] Iwahara H., Esaka T., Uchida H., Maeda N.: „Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production”, Solid State Ionics, 3–4, (1981), 359-363.
  • [2] Bonanos N., Knight K.S., Ellis B.: „Perovskite solid electrolytes: Structure, transport properties and fuel cell applications”, Solid State Ionics, 79, (1995), 161-170.
  • [3] Kreuer K.D.: „On the development of proton conducting materials for technological applications”, Solid State Ionics, 97, (1997), 1-15.
  • [4] Norby T.: „Solid-state protonic conductors: principles, properties, progress and prospects”, Solid State Ionics, 125, (1999), 1-11.
  • [5] Iwahara H.: „Technological challenges in the application of proton conducting ceramics”, Solid State Ionics, 77, (1995), 289-298.
  • [6] Schober T.: „Applications of oxidic high-temperature proton conductors”, Solid State Ionics, 162-163, (2003), 277-281.
  • [7] Tao Z., Zhu Z., Wang H., Liu W.: „A stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells”, J. Power Sources, 195, (2010), 3481-3484.
  • [8] Matsumoto H., Nomura I. , Okada S., Ishihara T.: „Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate”, Solid State Ionics, 179, (2008), 1486-1489.
  • [9] Xie K., Yan R., Chen X., Dong D., Wang S., Liu X., Meng G.: „A new stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells”, J. Alloys Compd., 472, (2009), 551-555.
  • [10] Iwahara H.: „Proton conducting ceramics and their applications”, Solid State Ionics, 86–88, (1996), 9-15.
  • [11] Maffei N., Pelletier L., McFarlan A.: „Performance characteristics of Gd-doped barium cerate-based fuel cells”, J. Power Sources, 136, (2004), 24-29.
  • [12] Katahira K., Kohchi Y., Shimura T., Iwahara H.: „Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, 138, (2000), 91-98.
  • [13] Dahl P.I., Haugsrud R., Lein H.L., Grande T., Norby T., Einarsrud M.A.: „Synthesis, densification and electrical properties of strontium cerate ceramics“, J. Eur. Ceram. Soc., 27, (2007), 4461-4471.
  • [14] Norby T., Larring Y.: „Concentration and transport of protons in oxides”, Curr. Opin. Solid State Mater. Sci., 2, (1997), 593-599.
  • [15] Tolchard J., Grande T.: „Physicochemical compatibility of SrCeO3 with potential SOFC cathodes”, J. Solid State Chem., 180, (2007), 2808-2815.
  • [16] Fabbri E., Licoccia S., Traversa E., Wachsman E.D.: „Composite Cathodes for Proton Conducting Electrolytes”, Fuel Cells, 9, (2009), 128-138.
  • [17] Dailly J., Fourcade S., Largeteau A., Mauvy F., Grenier J.C., Marrony M.: „Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells”, Electrochim. Acta, 55, (2010), 5847-5853.
  • [18] Tao S.W., Wu Q.Y., Peng D.K., Meng G.Y.: „Electrode materials for intermediate temperature proton-conducting fuel cells”, J. Appl. Electrochem., 30, (2000), 153-157.
  • [19] Fabbri E., Pergolesi D., Traversa E.: „Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells”, Sci. Technol. Adv. Mater., 11, (2010), 044301 (9str).
  • [20] Ardigò M.R., Perron A., Combemale L., Heintz O., Caboche G., Chevalier S.: „Interface reactivity study between La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathode material and metallic interconnect for fuel cell”, J. Power Sources, 196, (2011), 2037-2045.
  • [21] Lee S., Chu C.L., Tsai M.J., Lee J.: „High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing”, Appl. Surf. Sci., 256, (2010), 1817-1824.
  • [22] Tsai M. J., Chu C.L, Lee S.: „La0.6Sr0.4Co0.2Fe0.8O3 protective coatings for solid oxide fuel cell interconnect deposited by screen printing”, J. Alloys Compd., 489, (2010), 576-581.
  • [23] Shaigana N., Qu W., Ivey D.G., Chen W.: „A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects”, J. Power Sources, 195, (2010), 1529-1542.
  • [24] Thorel A.S. (Project coordinator): Periodic consortium report Y2 (D1.2), IDEAL-Cell project, (2009), 34.
  • [25] Przybylski K., Pasierb P., Prażuch J., Brylewski T.: „The properties and chemical stability of BaCe1-xMxO3-δ and SrCe1-xMxO3-δ protonic conductors”, European Fuel Cell Forum 2009, Lucerne, Switzerland, (2009).
  • [26] Brylewski T.: Metaliczne interkonektory w układzie metal/ceramika do zastosowania w ogniwach paliwowych SOFC, Wyd. Naukowe „Akapit”, Kraków, (2008).
  • [27] Anderson H.U., Tai L-W., Chen C.C., Nasrallah M.M., Huebner W.: Solid Oxide Fuel Cells IV, Library of Congress Catalog No: 95-60436, (Ed. Dokiya M., Yamamoto O., Tagawa H., Singhal S.C.), The Electrochemical Society, Inc., Pennigton, NJ (1995), 375-381.
  • [28] Yang L., Liu Z., Wang S., Choi Y.M., Zuo C., Liu M.: „A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors”, J. Power Sources, 195, (2010), 471-474.
  • [29] Yamaura H., Ikuta T., Yahiro H., Okada G.: „Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell”, Solid State Ionics, 176, (2005), 269-274.
  • [30] Kikuchi J., Koga S., Kishi K., Saito M., Kuwano J.: „Ionic conductivity in lanthanoid ion-doped BaCeLnO3 electrolytes”, Solid State Ionics, 179, (2008), 1413-1416.
  • [31] Matsumoto H., Kawasaki Y., Ito N., Enoki M., Ishikara T.: „Relation Between Electrical Conductivity and Chemical Stability of BaCeO3-Based Proton Conductors with Different Trivalent Dopants”, Electrochem. Solid-State Lett., 10, (2007), B77-B80.
  • [32] Perovskite Oxide for Solid Oxide Fuel Cells, Ed. Tatsumi Ishihara, Springer Science + Business Media, LLC,(2009), 252.
  • [33] Fabbri E., Oh T.-k., Licoccia S., Traversa E., Wachsman E.D.: „Mixed Protonic/Electronic Conductor Cathodes for Intermediate Temperature SOFCs Based on Proton Conducting Electrolytes”, J. Electrochem. Soc., 156, (2009), B38-B45.
  • [34] Przybylski K., Pasierb P.: „Structure and Properties of BaCeO3-δ–Based High Temperature Protonic Conductors”, Proc. 5th Japan-China-Norway Cooperative Symposium of Nanostructure of Advanced Materials and Nanotechnology − JCNCS 2010 – Nano-Science & Technology for Saving the Earth, Toyama Dai-Ichi Hotel, Toyama, Japan, (2010), 19-22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH1-0033-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.