PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using advanced data mining and integration in environmental prediction scenarios

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present one of the meteorological and hydrological experiments performed in the FP7 project ADMIRE. It serves as an experimental platform for hydrologists, and we have used it also as a testing platform for a suite of advanced data integration and data mining (DMI) tools, developed within ADMIRE. The idea of ADMIRE is to develop an advanced DMI platform accessible even to users who are not familiar with data mining techniques. To this end, we have designed a novel DMI architecture, supported by a set of software tools, managed by DMI process descriptions written in a specialized high-level DMI language called DISPEL, and controlled via several different user interfaces, each performing a different set of tasks and targeting different user group.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Institute of Informatics of the Slovak Academy of Sciences, Bratislava, Slovakia
autor
  • Institute of Informatics of the Slovak Academy of Sciences, Bratislava, Slovakia
autor
  • Institute of Informatics of the Slovak Academy of Sciences, Bratislava, Slovakia
autor
  • Institute of Informatics of the Slovak Academy of Sciences, Bratislava, Slovakia
autor
  • Institute of Informatics of the Slovak Academy of Sciences, Bratislava, Slovakia
Bibliografia
  • [1] Bartok J., Habala O., Bednar P., Gazak M., Hluchy L.: Data Mining and Integration for Predicting Significant Meteorological Phenomena. [in:] Proc. of ICCS 2010 — International Conference on Computational Science, vol. 1 of Procedia Computer Science, pp. 37–46. Elsevier Science BV, 2010.
  • [2] Brezany P., Aranda C. B., Corcho O., Janciak I., Woehrer A., Atkinson M.: ADMIRE – Report Defining the Final Iteration of the Model and Language. Deliverable report D1.9, The ADMIRE Project, May 2011.
  • [3] Ciglan M., Habala O., Tran V., Hluchy L., Kremler M., Gera M.: Application of ADMIRE Data Mining and Integration Technologies in Environmental Scenarios. [in:] R. Wyrzykowski, J. Dongarra, K. Karczewski and J. Wasniewski (Eds.), Parallel Processing and Applied Mathematics, Part II, volume 6068 of Lecture Notes in Computer Science, pp. 165–173. Springer-Verlag Berlin, 2010.
  • [4] EU Parliament: Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Official Journal of the European Union, 50(L108), April 2007.
  • [5] Galea M., Atkinson M., Liew C. S., Martin P.: emphADMIRE – Final Report on the ADMIRE Architecture, May 2011.
  • [6] Habala O., Maliˇska M., Hluch´y L.: Service-based flood forecasting simulation cascade in k-wf grid. [in:] M. Bubak, S. Unger (Eds.), Cracow 06 Grid Workshop : K-Wf Grid, pp. 138–145. Academic Computer Centre CYFRONET AGH, 2007.
  • [7] Hluchy L., Habala O., Tran V., Ciglan M.: Hydro-meteorological scenarios using advanced data mining and integration. [in:] Fuzzy Systems and Knowledge Discovery, 2009. FSKD ’09. Sixth International Conference on, volume 7, pp. 260–264, aug. 2009.
  • [8] Hluch´y L., ˇSeleng M., Habala O., Krammer P.: Mining Environmental Data in Hydrological Scenarios. [in:] M. Li, Q. Liang, L. Wang, Y. Song (Eds.), Seventh International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2010, 10-12 August 2010, Yantai, Shandong, China, pp. 1988–2992. IEEE, 2010.
  • [9] Jackson M. J., Antonioletti M., Dobrzelecki B., Hong N.C.: Distributed data management with ogsadai. [in:] S. Fiore, G. Aloisio (Eds.), Grid and Cloud Database Management, pp. 63–86. Springer Berlin Heidelberg, 2011.
  • [10] Jarka M., Podraza R.: Architecture of distributed system for challenging data mining tasks. [in:] D. Ryzko, H. Rybinski, P. Gawrysiak, M. Kryszkiewicz (Eds.), Emerging Intelligent Technologies in Industry, volume 369 of Studies in Computational Intelligence, pp. 197–206. Springer Berlin / Heidelberg, 2011.
  • [11] Martin P., Yaikhom G., et al.: Dispel: Data-intensive systems process engineering language, user manual. Technical report, August 2011.
  • [12] Spinuso A., Trani L., Atkinson M., Galea M.: Infrastructure for data-intensive seismology: Cross-correlation of distributed seismic traces through the admire Using advanced data mining and integration (...) 15 framework Geophysical Research Abstracts, 13, 2011.
  • [13] Stackpole J.: The WMO format for the storage of weather product information and the exchange of weather product messages in gridded binary form. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 1994.
  • [14] Trani L., Spinuso A., Galea M., Main I.: A novel automated approach to ambient noise data processing using the admire framework. Geophysical Research Abstracts, 13, 2011.
  • [15] Yokokawa M., Itakura K., Uno A., Ishihara T., Kaneda Y.: 16.4-tflops direct numerical simulation of turbulence by a fourier spectral method on the earth simulator. SC Conference, 0:50, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH1-0028-0154
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.