AUTOMATYKA ¢ 2011 » Tom 15 * Zeszyt 3

Robert Nowotniak*, Jacek Kucharski*

GPU-Based Massively Parallel Implementation
of Metaheuristic Algorithms

1. Introduction

In this paper, implementation of a state-of-the-art evolutionary algorithm, Quantum-
Inspired Genetic Algorithm [8, 36] (QIGA), in massively parallel environment (Graphics
Processing Units [20, 22, 23]) has been presented. Contrary to many recent papers [1, 4,
10, 28] concerning parallel implementation of evolutionary algorithms, in this paper a novel
approach has been taken. QIGA algorithm has been implemented entirely as a computation-
al kernel. Parallelization of the algorithm has been performed on two levels: In a block of
threads, each thread transforms a separate individual or different gene; In each block, sepa-
rate populations with same or different parameters are evolved. Finally, the computations
have been distributed to eight GPU devices, and over 400x speedup has been gained in
comparison to sequential implementation of the algorithm in ANSI C on one Intel Core i7
2.93 GHz CPU core. Correctness of the results has been verified in statistical analysis. The
presented approach can be applied to experimentation with a broad class of metaheuristics.

In recent years, programmable Graphics Processing Units have evolved into massively
parallel, multithreaded and many-core environments with tremendous computational power
and high memory bandwidth [5, 7, 22]. One of the leading general-purpose parallel comput-
ing architectures nowadays is NVIDIA Compute Unified Device Architecture [19, 20]
(CUDA) technology. CUDA-enabled GPUs have hundreds of cores that can concurrently
run thousands of computing threads. NVidia CUDA technology has been already success-
fully applied in a vast number of different fields; For example, linear algebra [11, 31], im-
age processing [6], scientific simulations [9, 27, 34], finance [12, 26] and others [15, 18,
21]. It is possible by the addition of programmable stages to the rendering pipelines, which
allows programmers to use powerful parallel processing on non-graphics data. To utilize
tremendous processing capabilities of modern GPU units, either existing libraries can
be used for common operations of selected algorithms (like matrix multiplication, linear
algebra, Fourier transform etc), or one’s own computational kernels can be written. In this
paper, the second approach has been taken.

* Computer Engineering Department, Technical University of Lodz, Poland

595

596 Robert Nowotniak, Jacek Kucharski

In several recent papers (e.g. [1, 4, 10, 28]), successful GPU-based implementations of
various metaheuristics have been presented. Usually, separate threads have been assigned to
transformation and evaluation of separate individuals. However, this approach is particular-
ly efficient for big populations only, i.e. several hounded of individuals, which is suitable
only for specific optimization or search problems. In this paper, implementation of Quan-
tum-Inspired Genetic Algorithm(QIGA) on CUDA has been presented. QIGA is a hybrid
heuristic algorithm due to Han and Kim [8], drawing inspiration from both the biological
evolution and unitary evolution of quantum systems. For fully comprehensive survey on
Quantum-Inspired Evolutionary Algorithms, the reader is referred to a recent notable paper
by Gexiang Zhang [36]. The original contribution of the current paper is limited neither
to Quantum-Inspired Genetic Algorithm nor to CUDA technology only. The presented
approach to parallelization of the experimentation procedure can be applied to a broad class
of metaheuristics. Also, it can be implemented in similar and competitive to CUDA techno-
logies, e.g. OpenCL [30, 32], BrookGPU [3] or Direct Compute [41].

This paper is structured as follows. In Section 2, fundamentals of CUDA architecture
have been given. In Section 3, technical details of programming in CUDA C have been
provided. In Section 4, the main contribution of this paper has been presented: the proposed
approach to parallel implementation of the heuristic algorithm in massively parallel envi-
ronment and its selected technical details. In Section 5, results of numerical experiments
performed with the CUDA implementation have been given and evaluated. In Section 6,
final conclusions of this paper have been drawn.

2. CUDA massively parallel architecture

This section provides fundamentals of CUDA architecture. For fully comprehensive
description, the reader is referred to CUDA C Programming Guide [38] and similar resourc-
es [39, 41].

The architecture of a modern graphics card is usually organized as follows. The card
can be equipped with several GPU devices. Each GPU device, has many streaming multi-
processors (SMs) with own flow control and on-chip shared memory units. Each multipro-
cessor has many streaming processors (SPs), consisting of independent arithmetic login
units (ALUs). Also, each GPU device has highly effective hardware tasks schedulers. For
example, nVidia GTX 295 is a dual-GPU graphic card consisting of two independent GPU
devices. Each device has 30 multiprocessors, and each multiprocessor has 8§ CUDA cores
(SPs) with 1.2 GHz clock rate. Thus, on GTX 295 there are 2 * 30 * 8 = 480 CUDA cores
and 2 * 896 = 1792 MB of global memory. Simultaneously, up to 60 different tasks can be
run, and up to 480 data elements can be processed. The actual number of threads that
are being run truly simultaneously rather than concurrently depends on GPU hardware and
implementation details.

In CUDA, threads are grouped in blocks, and blocks constitutes a two-dimensional
grid, which has been presented in Figure 1. The block size and number of threads per block
affect multiprocessor occupancy, and their actual values are the programmer decision.
Warp is a task scheduling unit, and it consists of 32 threads, each on a separate lane.

GPU-Based Massively Parallel Implementation of Metaheuristic Algorithms 597

Grid

Block (0, 0) || Block (1, 0) || Block (2, 0)

Block (0, 1) Block (1, 1) |-Block (2, 1)

Block (1, 1)

Fig. 1. Example of threads block (3x4) in the grid (2x3) on CUDA. Image source: [38]

There are several types of memory in CUDA: global, shared, local, registers, constant
and texture memory. Only registers and shared memory are located on-chip in multipro-
cessor. Thus, access to registers and shared memory is very fast. Similarly, read-only con-
stant memory (64 KB) is a cached buffer with fast access. On the contrary, access to local
and global memory is not cached, thus this memory has much higher latency. Shared
memory is a buffer shared between threads in the same block, and its capacity is 16 KB!
per multiprocessor. What is important, precisely planned, coalesced access to the global
memory is very critical for high performance of algorithms implemented on GPU. For more
information on coalescence conditions, the reader is referred to [41]. Because switching
tasks is very fast due to hardware scheduler, running thousands of threads on multi-
processor concurrently mitigates latency of access to global memory. Thus, keeping
high occupancy of multiprocessor is an important factor for efficient implementation
on GPUs. The function started in GPU device and executed by all threads is computational
kernel. For software developers, CUDA runtime and driver API are provided. Program-
ming in Runtime API is simpler, yet it provides a lower level of control of the GPU device.

! Modern GPU Cards with higher computation capabilities have more shared memory (up to 48 KB
currently)

598 Robert Nowotniak, Jacek Kucharski

3. Programming in CUDA

In this section, essential information on common CUDA tools (compiler, debugger etc.)
has been provided. For programming in CUDA, the following developer’s kit is required:

1) Developer Drivers [42]

2) CUDA Toolkit [42] — compiler, debugger, profiler, supplementary libraries
(CUBLAS, CUFFT, CUSPARCE etc.) and utilities (e.g. occupancy calculator, cuda-
-memcheck etc.)

3) Optionally, CUDA Software Development Kit [42] — several dozen examples of
CUDA applications (N-body problem, linear algebra operations, image processing,
fluid dynamics and others).

Runtime API in CUDA is a language extension to C with some additional qualifiers
and keywords, and certain restrictions. Following function qualifiers are most important in
CUDA:

— __global__ — main function that will be executed on the GPU device (entry point)

— __device__ — sub-function to be executed on the device (cannot be called from the
host)
Variable qualifiers:

— _ shared__ — shared memory variable

— __constant__ — constant memory variable

— _ device__ — device memory variable

Supplementary functions and built-in variables:

— __syncthreads() — waits until all threads in the block have reached this point

— __threadfence() — waits until memory accesses are visible to all threads in the device

— __ threadfence_block() — waits until memory accesses are visible to threads in the
block

— blockDim, gridDim — size of block and grid, respectively

— blockldx, threadldx — coordinates of current thread in grid and block, respectively

By convention, extension for CUDA source code files is .cu. To perform compilation
of the file source.cu with nVidia compiler, nvec command needs to be invoked, as follows:
$ nvce -0 executable source.cu

Additionally, to perform compilation with debug information for host and device code
included, -g and -G options are required:

$ nvee -g -G -o executable source.cu

For starting computational kernels on GPU device, a language extension <<< >>> in
CUDA C has been introduced. For example, the call:

functionl<<<dim3(3,2), dim3(10,10)>>>(argl, arg2)

GPU-Based Massively Parallel Implementation of Metaheuristic Algorithms 599

creates a 3x2 grid of blocks, each 10x10 threads. Each thread executes functionl with the
arguments argl, arg2. Distinction between different threads and the data elements they are
supposed to process is performed according to the thread localization in the block and grid
(build-in variables blockldx and gridldx, respectively).

If computational kernels run longer than few seconds, headless configuration is recom-
mended, i.e. the display should be turned off from the GPU card performing calculations
completely. Otherwise, operating system routines are often likely to interfere with calcula-
tion process. To prevent freezing of the display, a watchdog in the operating systems kills
the process which consumes GPU card resources constantly. Thus, if the operating system
does not support disabling the watchdog, running and debugging remotely is recommended.
Such functionality is provided in a commercial software, Parallel Nsight [40], and a free
visual interface to debuggers, DDD (Data Display Debugger) [35]. Data Display Debugger
can be started remotely, as follows:

$ ssh -X <host> ddd —debugger cuda-gdb ./prog

User interface of DDD debugger has been presented in Figure 2. At the top of the
window, the computational kernel code is visible. A breakpoint has been set in the first line
of the sub-function. The little arrow on the left side indicates the current line of execution.
At the bottom of the window, selected debugger commands and their results are visible in
the console.

File Edit View Program Commands Status Source Data Help
): | aiga.cuzazs (D Gy @ ol 2 g S G B
Lookup Fifidss Clear Walch Frifify OisplEss Riot ShoWE Hotate Set URdisH

N

_éeuice__ void storebest{} £
if (TID == 0} £
int i3
float wal = -1;
int bindex;
#pragna unroll 10
’ for €i = 0; i € popsize; i++} §{
if {fwals[il > val} {
val = fvalslils =
bindex = i:
3

A4 WX converge to best ever or to best in the generation {Banach

i
LH: 28/32 pc=0x0000000000001fa8 thread: {28,0,0) A
LH: 29/32 pc=0x0000000000001fa8 thread: {29,0,0)
LH: 30/32 pc=0x0000000000001fa8 thread: {30,0,0)
LH: 31/32 pc=0x0000000000001fa8 thread: {31,0,0)
{gdb} info cuda lane
DEY: 0/1 Device Type: gt200 5H Type: sn_13 SH/HP/LN: 30/32/32 Regs/LN: 128
SH: 0/30 wvalid warps: 00000000000000ff
HP: 0/32 wvalid/active/divergent lanes: OxfFfffffff/0n00000001/02fffffffe block:
(0,0}
LH: 0/32 pc=0x0000000000001ddd thread: (0,0,0}
{gdb} p threadldx
$2=ir=0,y=0,2=03 |
{gdb)
i
A §2-{x=0y=0,2=0] =

Fig. 2. Visual debugging of remote CUDA computational kernel in Data Display Debugger

600 Robert Nowotniak, Jacek Kucharski

Another useful tool from CUDA Toolkit is cuda-memcheck, which can detect incorrect
or misaligned memory addressing. cuda-memcheck can be started as:

$ cuda-memcheck ./prog

Unfortunately, in some situations, problems that exist in normal mode, does not exist if
the program is being run in the debugger. Moreover, sometimes a program runs correctly
only if breakpoints have been set on certain lines, and such situation is an obvious symptom
of race conditions. Since CUDA Toolkit 2.3, cuPrintf() function is also provided, but it is
rather useless for serious debugging. cuda-gdb is based on GDB, GNU Debugger [29], and
its details are described in [41]. The basic commands of the debugger are common for GDB
and CUDA-GDB:

— run — starts the debugged program, arguments for the program can be provided
— continue — continues the program being debugged, after signal or breakpoint

— break — sets breakpoint at specified line or function

— step — steps the program until it reaches a different source line

— list — lists specified function or line

— info break — presents status of user-defined breakpoints

Selected CUDA-GDB specific commands are as follow:

— info cuda — presents information about the current CUDA activities
— cuda — generic command for CUDA-specific subcommands, for example:
* device — presents or selects the current GPU device
* sm — presents or selects the current multiprocessor
* grid — presents information on the current grid
* block — presents information on the current block

4. Implementation of metaheuristics on CUDA

In this section, successful implementation of Quantum-Inspired Genetic Algorithm [8]
in CUDA has been presented and the implementation details have been provided. The
authors of the present paper encountered some difficulties implementing the algorithm as
a computational kernel. The problems and their solutions has been discussed in this section.

Because of stochastic nature of many contemporary metaheuristics, reliable evaluation
of the heuristic algorithm performance requires independent executions of the algorithm at
least several dozen times. Thus, many instances of the algorithm can be run in parallel, and
their results are statistically analysed afterwards. Between separate experiments neither
synchronization nor communication is required, which makes the experimentation proce-
dure embarrassingly parallel. In population-based metaheuristics, like evolutionary algo-
rithms or swarm intelligence techniques, selected stages of the algorithm can be also per-
formed in parallel. For example, each thread can evaluate the fitness of different indivi-
duals. This level of parallelization has finer granularity, as some genetic operators may
involve processing the whole population. Moreover, sequential execution of subsequent

GPU-Based Massively Parallel Implementation of Metaheuristic Algorithms 601

stages of the evolutionary algorithm is strictly necessary. Successful applications of this
type of parallelization in evolutionary algorithms have been already reported in many recent
papers [1, 4, 10, 13, 14, 33]. In our approach, parallelization has been performed
on two levels: In a block of threads, each thread transforms a separate individual or
different gene; In each block, a separate experiment with different population is con-
ducted. It has been illustrated in Figure 3. If evaluation of the fitness function does not
involve processing large amounts of data, essential data structures can be often stored
entirely in the very fast shared memory (on-chip memory in Streaming Multiprocessors).
This makes the whole experimentation procedure feasible for efficient implementation on
CUDA. Moreover, due to embarrassingly parallel nature of the procedure, the speedup
scales linearly to the number of multiprocessors and GPU devices.

Grid oj Blocks

r 1
o 'md‘"\ﬁ l‘p‘\\‘b . 00\-‘.:\ \;\p\.\\h I ‘\.0"‘\"5\
A Ao Aot AS Ao

™ gV \ W o
& o g &)
@ G i o ™) o)
\O\'\d‘\' \n,“}o‘\ \&:‘\o‘ \\“—J\o'\ \L\’&:\O\
o e 0" R &
X ¥ ¥ A L
T, o =
0
2¢ ‘ N ‘ I
~.‘“\\ \ J \ 7\
Independent
populations

Fig. 3. Proposed approach to parallelization of the experimentation procedure.
Computational threads in each block transform different individuals or different genes

Another important aspect of reliable experimentation with metaheuristics concerns
a high quality pseudo random numbers generator (PRNG) with certain statistical properties
[17]. Thus, generation of random numbers needs a special attention. One of highly regarded
pseudo random numbers generators is Mersenne Twister (MT) algorithm, available in most
modern programming languages. Let us assume that this PRNG is a reference for our con-
siderations. During the implementation, two possibilities of providing random numbers to
evolutionary algorithm running on GPU streaming multiprocessor have been considered:

1) Before running the computational kernel, random numbers can be calculated with arbi-
trary PRNG on CPU, and then copied to the device global memory. Thus, on the GPU
device, no random numbers are actually generated. Instead, they are just read consequ-
ently from the global memory buffer.

2) Generation of random numbers directly in GPU device computational kernel. In this
situation, threads running on GPU generate random numbers, when they are required.

602 Robert Nowotniak, Jacek Kucharski

Both possibilities have their drawbacks, and it needs some attention. Significant statis-
tical correlation between random numbers in different threads is completely inacceptable
for reliable experimentation. Thus, each thread needs its own source of random numbers,
and the first possibility is calculation of random numbers on CPU and writing them into
global memory of GPU in the beginning of the whole experiment. However, simplicity and
efficiency of this approach are more apparent than real. For example, if there are 500 popu-
lations of 10 individuals, each represented with 256 genes, evolving for 500 generations, it
will require a buffer of approximately 256*10*500*500 = 640 000 000 random numbers,
and thus over 2 GB of global memory, assuming that a random number is represented with
4 bytes-long float. If the GPU device provides that much global memory, constant and un-
coalesced access to this amount of memory has considerably high latency. Obviously, it
would be a bottleneck of the implementation. Moreover, indexing of the calculated random
numbers table needs to be performed very carefully with respect to the population and
generation number, thread localization in the grid and operation number. Whenever the
evolutionary algorithm is extended with an operation that requires another random number
(e.g. additional stochastic genetic operator), it needs to be taken into account, which brings
additional complexity.

On the contrary, random numbers can be also generated directly in device kernels.
However, to represent a state of Mersenne Twister generator, 624*4 = 2496 bytes are re-
quired [17]. If there are several dozen thousands of threads, over 624*4*100 000 = 200 MB
is required. Calculating random numbers directly on that amount of global memory would
be also a bottleneck. Fortunately, there are other random numbers generators that are
favourable for implementation on GPU. In CUDA Toolkit 3.2, a new library, CURAND
[37], has been introduced, which provides effective generation of random numbers on GPU
devices. In CURAND, Sobol [2] quasi-random and XORWOW [16, 24] pseudo-random
routines are implemented. XORWOW algorithm is a member of the xor-shift family of
pseudorandom number generators, and it is much more appropriate for running on GPU
device than Mersenne Twister. XORWOW requires only 40 bytes to represent state of
the generator. For the example presented in the previous paragraph, it requires only
256*500%40 = 512 KB of global memory. Disadvantage of this solution are worse statisti-
cal properties in comparison to Mersenne Twister. Also, results of the stochastic algo-
rithm based on XORWoW cannot be compared directly to the results obtained from
MT-based implementation of the algorithm on CPU. Only statistical comparison is possible
in this case.

In our research, Quantum-Inspired Genetic Algorithm [8] has been selected for parallel
implementation in CUDA. QIGA is a hybrid heuristic algorithm, drawing inspiration from
both, the biological evolution and unitary evolution of quantum systems. Concepts such as
qubits, observations and superposition of states are involved in different stages of the algo-
rithm. In QIGA, genes are modelled upon the concept of qubits, which brings an additional

GPU-Based Massively Parallel Implementation of Metaheuristic Algorithms 603

element of randomness and a “new dimension” into the algorithm. The qubit is a basic unit
of quantum information. It is a normalised vector in a two-dimensional Hilbert space
spanned by the base vectors |0> and |1> , as given in equation (1):

[¥) = [0)+B]1) (1)

where: a,Be C,|0)=[1 O]T ,

=10 1" and |of* +[p?|=1.
Observation of the qubit “P> yields a value O with probability |0c|2 and value 1 with

probability |[3|2 Entire solutions in QIGA are represented as binary quantum chromo-
somes, encoded as:

_[al az am}
e By - B @

‘I’)m . During the pheno-

where each column corresponds to binary quantum gene |‘I’>1 5 ey
type creation, states of all genes in quantum chromosomes are observed, i.e. the search
space is sampled with respect to the probability distribution encoded in the quantum chro-
mosomes. The genetic operators applied in the algorithm are based on quantum rotation
gates, which rotate state vectors in the quantum gene state space. Full pseudo-code of
Quantum-Inspired Genetic Algorithm has been presented in Listing 1.

procedure QIGA
begin
1«0
initialize Q(0)
make P(0) by observing Q(0)
evaluate P(0)
store the best solution among P(0)
while not termination-criterion do
t—t+1
make P(t) by observing Q(t-1) population
evaluate P(z)
update Q(?) using quantum gates U(6,)

store the best solution among P(?)
end while
end

Listing 1. Pseudo-code of Quantum-Inspired Genetic Algorithm

604 Robert Nowotniak, Jacek Kucharski

Let us denote as popsize, the size of quantum population Q, as chromlen, the length of
quantum chromosome, and as MAXGEN, the maximum number of generations. Our propos-
al of the main data structures organization is as follows:

— In shared memory — quantum population Q (sizeof(float) * chromlen * popsize) obse-
rved population P (sizeof(char) * chromlen * popsize)
Fitness values of individuals fvals (sizeof(float) * popsize)

— In global memory — PRNG states only (sizeof(curandState) * chromlen * popsize)

— In constant memory — read-only data (e.g. data required for fitness evaluation)

Simplified code of the main kernel function has been presented below. As it is easy to
see, it corresponds directly to the pseudo-code of QIGA.

__global void giga(char *BESTgmem, float *FITNESSgmem, curandState
*rngStates) {

int t = 0; // generation number

// fitness of the best individual in population
bestval = -1; // declared in shared memory

initialize () ;
__syncthreads () ;
observe (rngStates) ;
__syncthreads () ;
repair () ;
__syncthreads () ;
evaluate () ;
__syncthreads () ;
storebest () ;

while (t < MAXGEN)
t++;
__syncthreads () ;
observe (rngStates) ;
__syncthreads () ;
repair () ;
__syncthreads () ;
evaluate () ;
__syncthreads () ;
update () ;
__syncthreads () ;
storebest () ;
__syncthreads () ;

}

__syncthreads () ;

if (threadIdx.x == 0) {
// copy the evolution result to global memory buffer
FITNESSgmem[gridDim.x * blockIdx.y + blockIdx.x] = bestval;
//

}

GPU-Based Massively Parallel Implementation of Metaheuristic Algorithms 605

In the beginning, bestval (per block variable, declared in the shared memory) is initia-
lized with a negative value. Then, MAXGEN generations of the quantum population Q are
evolved. Eventually, the first thread in a block (i.e. threadldx.x == 0) is designated to write
the fitness of the best individual to the global memory buffer FITNESSgmem.

Proper synchronization of threads is extremely critical. Therefore, _ syncthreads() is
called after each subsequent stage of the algorithm. If there had been a lack of some
__syncthreads() calls, execution of the program would have been terribly wrong. For exam-
ple, some threads would have started evaluating individuals (evaluate () call), while
other threads would not have finished modifying them (repair () call). Possible concur-
rent evaluation and modification of the same data structures would have resulted in wrong
outcomes of the algorithm eventually. The wrong synchronization of threads is often hard to
detect, if a separate reliable implementation of the algorithm and a results comparison pro-
cedure are not at the programmer’s disposal.

The presented giga computational kernel can be started with the call:
giga<<<dim3 (64, 10), 250>>>(d best, d fit, rngStates);

For example, this call creates a grid of 64x10 = 640 blocks (separate populations), 250
threads in each block. Consequently, 640*250 = 160 000 threads are started on GPU con-
currently, conducting evolution of 640 populations in parallel. d_best, d_fit and rngStates
are pointers to memory buffers in the device global memory, and memory for the buffers
must be allocated in advance, before running the kernel.

5. Experimental results

Firstly, Quantum-Inspired Genetic Algorithm has been implemented as a typical se-
quential program in ANSI C running on CPU for comparison (Mersenne Twister PRNG).
To verify the correctness of the CPU implementation, selected results presented in [8] have
been reproduced. Secondly, the authors have created new implementation in CUDA C
Runtime API (XORWOW PRNG), and statistical significance of its outcomes has been
compared to the expected results in statistical analysis. The performance comparison of the
two implementations is the main experimental contribution of this article.

In [8], knapsack problem has been used as an underlying combinatorial optimization
problem. Strongly correlated set of data has been generated, i.e. hard version of the problem
where precious items are heavy:

w; = uniformlyrandom(1,10)
pi=wi+5)

where w; denotes weight of the i-th item, and p; denotes profit of the item. Experiments with
250 items and 10 quantum individuals evolving for 500 generations have been conducted.

606 Robert Nowotniak, Jacek Kucharski

In Han’s implementation (Visual C++ 6.0, Pentium-III S00MHz), about 0.724 evolutions
per second is performed (cf. Tab. 2. In [8]). In our CPU implementation (ANSI C, Intel Core
i7, 2.93GHz), about 7.324 evolutions per second is performed. In the GPU implementation
(nVidia CUDA C, GTX-295), evolving independent populations in the grid of size 50x20,
about 882.7 evolutions per second is performed. Thus, the speedup gained on GTX-295 is
about 120x in comparison to the sequential implementation. Performance comparison
has been presented in Figure 4. In the measurement, only the giga computational kernel
execution time has been taken into account. Device initialization (cudaSetDevice ()
call) takes also few seconds, but this delay is constant and one-time, thus it has not been
accounted in the measurement.

Performance Comparison

10 T
i »— CPU (Intel Core i7)
s—a GPU (nVidia GTX 295)

Time (s)

-1] I

10° 10*
Number of Populations

Fig. 4. Performance Comparison (Intel Core i7 CPU vs dual-GPU GTX 295)
On the left, linear scaling of the axes. On the right, log scaling of the axes

Due to stochastic nature of the evolutionary algorithm and different PRNGs used in
CPU and GPU implementations, correctness of the GPU implementation has been verified
with statistical analysis in comparison to sequential implementation in ANSI C. Evolution
of 30000 populations has been performed on CPU and GPU. It took 69 minutes and 34
seconds, respectively. Box plot and histogram of the results are given in Figures 5 and 6.
Because of different random numbers generators and their different statistical properties,
the results comparison fail to pass strict statistical tests, but essential measurements of va-
riability and diversity (Tab. 1) confirms that the implementations are consistent with each
other with high certainty.

GPU-Based Massively Parallel Implementation of Metaheuristic Algorithms

607

(500 Generations of 10 Quantum Individuals Each)

Distribution of Best Fitness Values in Independent Populations

1450

1440

14301

1420

1380

1370

Results Distribution Plot
(Correctness Verification)

F————— ++H} +
e 4 A

T T
I I
I I
I I
I I
I I
I I
- —+
+

CPU, 30000 Populations GPU, 30000 Populations
(Sequential Implementation) (Parallel Implementation)

Fig. 5. Correctness verification. The ends of the whiskers represent

the lowest and the highest result still within 1.5 interquartile range (IQR)

2500
2000
1500
1000

500

00[())istribution of The Best Fitness Values in Independent Populations

1380 1390 1400 1410 1420 1430

1380 1390

1400 1410 1420 1430

Fig. 6. Correctness verification (histogram of 30000 evolutions)

608 Robert Nowotniak, Jacek Kucharski

Table 1
Results of comparison (correctness verification)
Median Average Variance
CPU 1406.659424 1406.25894801 74.70038777
GPU 1406.108887 1406.09914151 74.67657533

Finally, an experiment has been conducted with distributed calculations on eight GPU
devices (4 x Tesla T10 GPU, GTX 285, dual-GPU GTX 295 and Tesla C2070 GPU). On
this configuration, the speedup gained was over 400x. The total number of available
streaming multiprocessors is very important in this approach. For distributed calculations
on several remote nodes, the authors of the present paper finds dsh [44], a distributed shell,
particularly useful. Other possibilities of distributing the calculations include rCUDA [43],
a framework which enables the concurrent usage of CUDA-compatible devices remotely.

6. Conclusions

In this paper, successful implementation of Quantum-Inspired Genetic Algorithm in
massively parallel environment (CUDA technology) has been presented and implementa-
tion details have been provided. The proposed approach to parallelization is twofold: In
a block of threads, each thread transforms a separate individual or different gene; In each
block, evolution of a separate population with same or different parameters is conducted.
This approach can be applied to experimentation with any heuristic algorithm, and also it
can be implemented in any similar to CUDA technology. Correctness of the results has been
verified in statistical analysis. On one nVidia GTX-295 card, about 120x speedup has been
gained in comparison to sequential implementation of the algorithm. On eight GPU devices,
over 400x speedup has been gained. This result can be further improved by running the
algorithm on more GPU cards. Due to embarrassingly parallel nature of the experimentation
procedure, the speedup scales linearly to the number of multiprocessors and GPU devices.
Possibly, further speedup improvement could be gained in OpenCL [30, 32] on Radeon
GPU cards, which were not available to the authors during this work. What is more impor-
tant, the speedup gained allows efficient meta-optimization [25] of modern metaheuristics,
which is the most exciting path for possible future research.

Writing advanced computational kernels in CUDA that are both effective and correct
requires programmer’s special diligence. In massively parallel programming, numerous
nontrivial issues exist the programmer must be fully aware of, be able to detect, analyze and
to prevent them. Random factors present in many heuristic algorithms bring additional com-
plexity. The common tricky issues that always need special attention include precisely

GPU-Based Massively Parallel Implementation of Metaheuristic Algorithms 609

planned global memory access, proper synchronization, handling of critical sections,
avoiding possible race conditions and deadlocks. In special situations, also avoiding
possible threads resources starvation. Thus, some aspects of programming in massively
parallel environment is hardly comparable to sequential programming. Moreover, accord-
ing to the authors’ experience, some tools and features are not very mature yet in compari-
son to modern compilers and development environments

Acknowledgement

The authors are grateful to Piotr Kowalski (Technical University of Lodz) for several
discussions. Robert Nowotniak, a co-author of the present paper, is a scholarship holder of
project entitled ,, Innovative education ...” supported by European Social Fund.

References

[1] Banzhaf W., Harding S., Accelerating evolutionary computation with graphics processing units.
Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computa-
tion Conference: Late Breaking Papers, 2009.
[2] Bratley P., Fox B.L., ALGORITHM 659: implementing Sobol’s quasirandom sequence generator.
ACM Transactions on Mathematical Software (TOMS), ACM, 14, 1988, 88—100.
[3] Buck I, Foley T., Horn D., Sugerman J., Fatahalian K., Houston M., Hanrahan P., Brook for
GPUs: stream computing on graphics hardware. ACM Transactions on Graphics (TOG), 2004.
[4] Cabido R., Montemayor A.S., Pantrigo J.J., High performance memetic algorithm particle filter
for multiple object tracking on modern GPUs. Soft Computing-A Fusion of Foundations, Metho-
dologies and Applications, Springer, 1-14.
[5] Fernando R. (ed.), GPU Gems. Programming Techniques, Tips and Tricks for Real-Time Gra-
phics. Pearson Higher Education, 2004.
[6] Fialka O., Cadik M., FFT and convolution performance in image filtering on GPU. Tenth Interna-
tional Conference on Information Visualization, 2006. IV 2006.
[71 Fok K.L., Wong T.T., Wong M.L., Evolutionary computing on consumer graphics hardware. In-
telligent Systems, [EEE, 22, 2007, 69-78.
[8] Han K.H., Kim J.H., Genetic quantum algorithm and its application to combinatorial optimiza-
tion problem. Proceedings of the 2000 Congress on Evolutionary Computation, 2000.
[91 Harris M.J., Fast fluid dynamics simulation on the GPU. GPU Gems, Citeseer, 1, 2004, 637—665.
[10] Kriiger F., Maitre O., Jiménez S., Baumes L., Collet P., Speedups between x70 and %120 for
a generic local search (memetic) algorithm on a single GPGPU chip. Applications of Evolutiona-
ry Computation, Springer, 2010, 501-511.
[11] Kriiger J., Westermann R., Linear algebra operators for GPU implementation of numerical algo-
rithms. ACM SIGGRAPH 2005 Courses, 2005.
[12] Lee M., Jeon ., Bae J., Jang H. S., Parallel implementation of a financial application on a GPU.
Proceedings of the 2nd International Conference on Interaction Sciences: Information Technolo-
gy, Culture and Human, 2009.
[13] Li J., Zhang L., Liu L., A parallel immune algorithm based on fine-grained model with
GPU-acceleration. Fourth International Conference on Innovative Computing, Information and
Control (ICICIC), 2009.

610

Robert Nowotniak, Jacek Kucharski

[14]
[15]
[16]
[17]
[18]
[19]
[20]
(21]

[22]
(23]

[24]
[25]

[26]

(27]
(28]

[29

—

[30]
[31]
[32]

(33]

Li J.M., Wang X.J., He R.S., Chi Z.X.: An efficient fine-grained parallel genetic algorithm based
on gpu-accelerated. IEEE Computer Society, 2007.

Manavski S., Valle G., CUDA compatible GPU cards as efficient hardware accelerators for
Smith-Waterman sequence alignment. BMC Bioinformatics, BioMed Central Ltd, 9, 2008, S10.
Marsaglia G., Xorshift rngs. Journal of Statistical Software, 8, 2003, 1-6.

Matsumoto M., Nishimura T., Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation
(TOMACS), ACM, 8, 1998, 3-30.

Moreland K., Angel E., The FFT on a GPU. Proc. of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware 2003.

Nickolls J., Buck I., Garland M., Skadron K., Scalable parallel programming with CUDA. Queue,
ACM, 6, 2008, 40-53.

Nvidia: Compute Unified Device Architecture Programming Guide. NVIDIA, Santa Clara, CA,
2007.

Oh K.S., Jung K., GPU implementation of neural networks. Pattern Recognition, Elsevier, 37,
2004, 1311-1314.

Owens J., GPU architecture overview. ACM SIGGRAPH, 2007.

Owens J.D., Luebke D., Govindaraju N., Harris M., Kriiger J., Lefohn A.E., Purcell T.J., 4 Survey
of General-Purpose Computation on Graphics Hardware. Computer Graphics Forum, 2007.
Panneton F., U’ecuyer P., On the xorshift random number generators. ACM Transactions on Mo-
deling and Computer Simulation (TOMACS), ACM, 15, 2005, 346-361.

Pedersen M.E.H., Tuning & Simplifying Heuristical Optimization. University of Southampton,
School of Engineering Sciences, 2010.

Preis T., Virnau P., Paul W., Schneider J.J., Accelerated fluctuation analysis by graphic cards and
complex pattern formation in financial markets. New Journal of Physics, IOP Publishing, 11,
2009, 093024.

Preis T., Virnau P., Paul W., Schneider J.J., GPU accelerated Monte Carlo simulation of the 2D
and 3D Ising model. Journal of Computational Physics, Elsevier, 228, 2009, 4468-4477.
Robilliard D., Marion-Poty V., Fonlupt C., Population parallel GP on the G80 GPU. Genetic
Programming, Springer, 2008, 98—109.

Stallman R., Pesch R. H., Shebs S. (ed.), Debugging with GDB: The GNU source-level debugger.
Free Software Foundation, 1995.

Stone J.E., Gohara D., Shi G., OpenCL: A parallel programming standard for heterogeneous
computing systems. Computing in Science and Engineering, 12, 2010, 66-73.

Tomov S., Dongarra J., Baboulin M., Towards dense linear algebra for hybrid GPU accelerated
manycore systems. Parallel Computing, Elsevier, 36, 2010, 232-240.

Tsuchiyama R., Nakamura T., lizuka T., Asahara A., Miki S., The OpenCL Programming Book.
Group, Fixstars Corporation, 2009.

Wong M.L., Parallel multi-objective evolutionary algorithms on graphics processing units. Proc.
of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conferen-
ce: Late Breaking Papers, 2009.

Yang J., Wang Y., Chen Y., GPU accelerated molecular dynamics simulation of thermal conducti-
vities. Journal of Computational Physics, Elsevier, 221, 2007, 799-804.

Zeller A., Liitkehaus D., DDD — a free graphical front-end for UNIX debuggers. ACM Sigplan
Notices, ACM, 31, 1996, 22-27.

Zhang G., Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal of
Heuristics, Springer, 2010, 1-49.

GPU-Based Massively Parallel Implementation of Metaheuristic Algorithms 611

[37] http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CURAND_Library.pdf
[2011-05-31].

[38] http://developer.download.nvidia.com/compute/cuda/4 0/toolkit/docs/CUDA_C_Program-
ming_Guide.pdf [2011-05-31].

[39] http://www.lunarc.lu.se/Documents/nvidia-workshop/files/tutorial/ CUDA_C_QuickRef.pdf
[2011-05-31].

[40] http://developer.nvidia.com/nvidia-parallel-nsight [2011-05-31].

[41] http://developer.nvidia.com/nvidia-gpu-computing-documentation [2011-05-31].

[42] http://developer.nvidia.com/cuda-toolkit-40 [2011-05-31].

[43] http://www.hpca.uji.es/rCUDA [2011-05-31].

[44] http://www.netfort.gr.jp/~dancer/software/dsh.html.en [2011-05-31].

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

