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The μ-Synthesis and Analysis of the Robust Controller
for the Active Magnetic Levitation System

1. Introduction

Over the centuries object suspension has stunned and interested most of the people in-

cluding famous scientists such as Benjamin Franklin and Robert Goddard. In 1842 Ernshaw

came up with the idea of the suspension of an object in the magnetic field created by per-

manent magnets. He also proved that permanent magnets cannot reach a stable levitation in

all 6DOF [5] which requires new methods to be applied. The stable levitation is achieved

by adjusting an object position and/or velocity feedback which creates the appropriate mag-

netic field. Active Magnetic Levitation System (AMLS) is a perfect example of a structurally

unstable object. The control task is to maintain a ferromagnetic object in a desired position

by generating an appropriate magnetic field which disposes of gravity and counteracts other

accelerations.

In various magnetic levitation applications e.g. in high-speed trains and magnetic bear-

ings [13,4] we face a problem of keeping the system stable even in the presence of parameters

variations and other perturbations. Very common problem can be the control task of magnetic

vehicles when the mass of passengers is variable. The synthesis and analysis of the robust

controller for the AMLS with variable load one can find in [12,15].

Systems that can tolerate plant variability and uncertainty are called robust. The prob-

lem of stabilising the uncertain linear dynamic systems has been discussed and analysed for

almost 3 decades. The main issue with control systems are differences between the actual

system and its nominal model which is used in control system design. Every practising con-

trol engineer should take into account a real-world systems vulnerability to various types

of perturbations like non-ideal sensors, actuators, external noises, parametric uncertainties,

unmodelled non-linearities and many others. Methods based on modern feedback H∞ op-

timisation theory [7,9,18] deal with robustness much more directly than other approaches.
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The research on robust controllers design is said to be started in the late 1970s and early

1980s with a breakthrough paper by Zames [16] which introduced theory which was quickly

extended to more general problems. At the time, active research on adaptation of this robust

control theory to non-linear systems is being done in e.g. [1].

2. Active Magnetic Levitation System

2.1. Experimental Set Up

In the following research the INTECO active magnetic levitation system [8] was used.

It is equipped with a coil current driver, an optical distance sensor and a computer-based

real-time system. The schematic diagram with state variables and main forces as well as its

photography is depicted in Figure 1. As it has been already mentioned the electromagnet

located on the top of the device generates the magnetic field to keep a ferromagnetic object

in a desired position.

Three typical ways of controlling the current in the electromagnet coil are used in

AMLS: based on analogue voltage control, PWM signal control and current control [11].

Each of them has different features and influences the system dynamics in other way. In this

case PWM voltage driven coil was applied and appropriate coefficients were included in the

model equations.

Four objects were chosen to be tested in the experiments. They are divided into two

groups of different diameter. In each group the objects have various mass. They weigh

0.05297 kg and 0.03140 kg in the first set and 0.05843 kg and 0.03693 kg in the second

one, respectively. The objective of such a choice was to check the impact of the object size

and mass on the controller behaviour.

a) b)

Fig. 1. Photo of the laboratory AMLS (a). Diagram of the AMLS with one electromagnet (b) [8]
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2.2. System Dynamics

2.2.1. Non-linear Model

AMLS model proposed in [8] was applied with small modifications, as in the given

AMLS only upper electromagnet is provided. Non-linear state-space equations describing

the AMLS corresponding to the diagram from Figure 1 are given as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x2

ẋ2 =−Fem1

m
+g

ẋ3 =
1

fi(x1)

(
kiu+ ci − x3

)
,

(1)

where

fi(x1) =
fiP1

fiP2
exp

(−x1

fiP2

)
(2)

Fem1(x1) = x3
1

FemP1

FemP2
exp

( −x1

FemP2

)
. (3)

x1 is a ferromagnetic object distance from an electromagnet, x2 is an object velocity and x3

is a current in a coil. Fem1 is an electromagnetic force generated by the electromagnet. Both

Fem1, fi(x1) depend on the object distance from the electromagnet and the former also on the

current in a coil. Those functions were chosen experimentally and seem to be appropriate

ones. All model coefficients and parameters values and descriptions are given in Table 1.

Table 1
Model Parameters Values

Parameter Description Value Unit

m object mass 0.025-0.086 [kg]

g gravitational acceleration 9.81 [m/s2]

Fem1 Electromagnetic force function of x1 and x3 [N]

FemP1 Coefficient 6.5800e-003 [H]

FemP2 Coefficient 2 6.1382e-003 [m]

fi(x1) function of x1 [1/s]

fiP1 Coefficient 3 744.3638e-006 [m·s]

fiP2 Coefficient 4 6.6351e-003 [m]

ci Coefficient 5 -53.3046e-003 [A]

ki Coefficient 6 3.8149 [A]

iMIN Minimal Current 0.03884 [A]

uMIN Minimal Voltage 0.00498 [V]
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2.2.2. Linear Model

For the application of H∞ optimisation method, the non-linear model (1) was linearised

in an equilibrium point x0 = [x10 x20 x30]
T :

{
ẋ = Ax+Bu
y =Cx

,

with matrices:

A =

⎡
⎣ 0 1 0

a21 0 a23

a31 0 a33

⎤
⎦ , B =

⎡
⎣ 0

0

b3

⎤
⎦ (4)

C =
[

1 0 0
]
.

The coefficients in matrices A and B have the following form:

a21 =
x2

30

m
FemP1

F2
emP2

exp(−x10/FemP1)

a23 =−2x30

m
FemP1

F2
emP2

exp(−x10/FemP1)

a31 =
ci − x30

fi(x10) · fiP2

a33 =− fi(x10)
−1

b3 =
ki

fi(x10)
.

(5)

The steady-state point was chosen as follows. The desired position of a ferromagnetic

object is x10 = 0.01. The object velocity must be equal to zero, thus x20 = 0. From the second

equation in (4) we obtain the value for x30 = 1.4480. The formula for x30 is presented below:

x30 =

√
mg

FemP2

FemP1
exp

( x10

FemP1

)
. (6)

Additionally, the plant is stabilised in the equilibrium point when a constant control

signal u0 = 0.3935 is adjusted. One can get its value from the third equation in (4). Again,

the formula for u0 is presented below:

u0 =
x30 − ci

ki
. (7)
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AMLS was linearised in the equilibrium point x0 = [0.01 0 1.4480]T , thus, the fol-

lowing matrices were obtained:

A =

⎡
⎣ 0 1 0

1598.1807 0 −13.5496

−9103.8413 0 −40.2348

⎤
⎦ , B =

⎡
⎣ 0

0

1.5349

⎤
⎦ ,

C =
[

1 0 0
]
. (8)

3. Robust Controller Design

3.1. Robust Modelling

In order to prepare a model for the robust analysis, parameter m was taken out of a21

and a23 coefficients. The experiments will be done for the objects whose mass varies. That is

why it is convenient to represent the mass parameter in the following way:

m = m̄(1+ pmδm), (9)

where m̄ is a nominal mass value, pm denotes a percentage variance of the parameter and

δm ∈ [−1,1]. To model uncertainty in a proper way the parameters were chosen as follows

pm = 0.4 and m̄ = 0.04493 after finding the mean of all masses. For the sake of the design

we cite the Upper Linear Fractional Transformation (ULFT) definition [7]:

Definition 1 (Upper Linear Fractional Transformation). Let M be a complex matrix parti-
tioned as

M =

[
M11 M12

M21 M22

]
∈ C

(p1+p2)×(q1+q2), (10)

and let Δ ∈ C
q1×p1 and K ∈ C

q2×p2 be the other complex matrices. Then we can formally
define an upper LFT with respect to Δ as the map:

Fu(M, ·) : Cq1×p1 → C
p2×q2 (11)

with

Fu(M,Δ) = M22 +M21Δ(I −M11Δ)−1M12 (12)

provided that the inverse (I −M11K)−1 exists.

Mass inverse will be presented in a form of ULFT with respect to M and δm:

1

m
= Fu(M,δm) =

1

m̄
− pm

m̄
δm(1+ pmδm)

−1 (13)
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with

M =

[−pm
1
m̄

−pm
1
m̄

]
. (14)

It introduces the following input/output relation to our system:

[
ym

vm

]
=

⎡
⎢⎣−pm

1

m̄
−pm

1

m̄

⎤
⎥⎦
[

um

a21x1 +a23x3

]
. (15)

which obviously modifies system equations to:

⎡
⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ym

y

⎤
⎥⎥⎥⎥⎥⎦
= GML

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

um

u

⎤
⎥⎥⎥⎥⎥⎦

(16)

[um] = [ymδm],

where

GML =

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦ , (17)

with matrices:

B1 =

⎡
⎣ 0

−pm

0

⎤
⎦ , B2 =

⎡
⎣ 0

0

b3

⎤
⎦ , C1 =

[
a21 0 a23

]
, C2 =

[
1 0 0

]
,

D11 =−pm, D12 = D21 = D22 = 0.

GML denotes an input/output dynamics of the system (16) with parametric uncertainties.

One can notice that it consists of the basic linear state-space equations (4) and the equations

obtained by variations over m parameter (15). In Figure 2 Bode plots of the nominal and

perturbed AMLS are depicted in order to present the impact of the mass variations on the

plant to be compensated by a controller.

Furthermore, because in the given AMLS the position sensor is optical, shape and size

affect the sensor characteristics which can be treated as a sensor noise to be cancelled by
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weighting functions. Even though sensor characteristics are not very precise, differences must

be taken into consideration when experiments results are discussed.

Fig. 2. Bode frequency responses of the nominal and perturbed plants

3.2. Design Requirements

Originally the problem of the H∞ optimisation was proposed and solved by Zames in

[16]. Let us define the sensitivity function of the continuous closed-loop system (Fig. 3):

S = (I +GK)−1, (18)

where G is the plant transfer function and K is the controller transfer function. The main

objective of the H∞ optimisation is to find a controller K that makes the closed-loop system

stable and minimizes the peak value of the sensitivity function:

min
K

‖S‖∞ = min
K

sup
ω∈R

‖S( jω)‖2. (19)

In general the H∞ optimisation problem can be considered as the minimisation of the peak

value of certain closed-loop frequency response functions [9,10]. In other words, H∞ opti-

misation addresses the following two issues:

1) Closed-loop system with K must be asymptotically stable,

2) The influence of the disturbance d on the output y should be minimised.
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3.2.1. Mixed Sensitivity Problem

To ensure the robust stability and performance specification by a robust controller the

criteria that must be satisfied will be introduced briefly. The mixed sensitivity (or, so-called S

over KS)[7] problem may be formulated as a special case of H∞ optimal regulator problem

[9]:

min
Kstabilising

∥∥∥∥ Wp(I +GK)−1

WuK(I +GK)−1

∥∥∥∥
∞
. (20)

In fact, equation (20) describes the nominal performance criterion that must be satisfied by

a control system depicted in Figure 3. It is the closed-loop system with model uncertainties

and possible perturbations included. The system G in (20) as well as in Figure 3 refers to

a transfer function combining GML (17) and uncertainties representation Δ (G is an ULFT

(FU (GML,Δ)) with respect to GML and Δ ).

Fig. 3. Continuous closed-loop system structure

3.2.2. Weighting Functions Choice

The most crucial and difficult task in robust controller design is a choice of the weighting

functions. In this case we have only two Wp and Wu which does not mean that the problem

is less complex. Even though in some articles there are attempts to outline the algorithm for

finding appropriate functions, it is still a very monotonous and laborious process especially

when a given model has complex non-linearities which obviously are omitted in a linear

model. The very general guidelines for weighting functions choice (21) were proposed in

[3,17,14] and were used in this paper, though were not strictly followed:

Wp =

⎛
⎜⎝

s

M
1

np
p

+ωb

s+ωbA
1

np
p

⎞
⎟⎠

np

Wu =

⎛
⎜⎝τs+A

1
nu
u

τs

M
1

nu
u

+1

⎞
⎟⎠

nu

, (21)
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where Mp and Mu are high frequency gains, Ap and Au are low-frequency gains and ωb and

τ determine crossover frequency. np and nu denote the order of a function. In literature there

are also some articles about applying intelligent optimisation methods (genetic algorithms)

[6,2] to find the best weighting functions however there is still a great deal of work to do in

this field.

In the case of the given AMLS, Wp was chosen as a first-order scalar function presented

below:

Wp = 100 · 0.1s+2500

14s+3000
, (22)

while Wu was taken as a constant value:

Wu = 10−2. (23)

Fig. 4. Bode plots of inverted weighting function Wp

The entire procedure of choosing those weights was done experimentally with the help

of the article [12] , however the objective of finding the controller of the lowest order and

complexity determined the order of the designed functions (The less complicated functions

are, the less compensator order is obtained). The aim of the weighting functions is to reflect

the significance of meeting performance criteria within particular frequency range. Thus,

performance weighting function was retrieved as (22). From (20) and the fact that Wp and

Wu are scalar functions, it is seen that to ensure performance criteria, sensitivity function
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singular values must lie below 1
Wp

. The singular values of the inverted weighting function Wp

are presented in Figure 4.

Unfortunately, in real-world applications theory does not guarantee effectiveness of the

obtained controller. Many trials were done to obtain a controller which stabilises a ferromag-

netic object in a desired position and satisfies the performance criteria.

3.3. μ-Synthesis

After the entire design process done in previous sections, the robust continuous con-

troller was obtained via μ-synthesis method [7,18] which is an iterative way of solving the

mixed sensitivity problem. Three iterations were performed as there was no further progress

in peak μ-value and gamma. Iteration summary is given in Table 2. Authors were unable to

find a controller with better performance features. More work should be done on tuning the

weighting functions in the future to receive better results.

Table 2
Iteration Summary

Iteration 1 2 3

Controller Order 4 4 6

Total D-Scale Order 0 0 2

Gamma Achieved 3690.28 120.603 98.667

Peak mu-Value 3690.28 115.393 98.664

A compensator transfer function has a structure presented in (24)

K(s) =
b5s5 +b4s4 +b3s3 +b2s2 +b1s+b0

s6 +a5s5 +a4s4 +a3s3 +a2s2 +a1s+a0
(24)

with the coefficients collected in Table 3:

Table 3
Robust Controller Transfer Function Coefficients

a b

a0 1614375400828 b0 -268719224277636

a1 252424449491334 b1 -42023751230480944

a2 2687549789711 b2 -1494702791556530

a3 10856369937 b3 -22344654186574

a4 21684216 b4 -118649007633

a5 18400 b5 -169446677



The μ-Synthesis and Analysis of the Robust Controller . . . 95

The obtained robust controller transfer function is of the high order and generates higher

harmonic signal. In the practical application the controller (24) is converted to the discrete

form with an appropriate sampling time and method. In the case of the following system,

the discretisation must have been done knowingly to ensure the best control quality. Matched

zeros and poles method with sampling time Ts = 300 μs was successfully applied in this

research and the digital regulator has the z-domain structure shown in (25). Coefficients are

collected in Table 4.

K(z) =
b5z5 +b4z4 +b3z3 +b2z2 +b1z+b0

z6 +a5z5 +a4z4 +a3z3 +a2z2 +a1z+a0
(25)

Table 4
Discrete Robust Controller Transfer Function Coefficients

a b

a0 0.0040 b0 7348.3765

a1 0.7137 b1 38363.6042

a2 3.7700 b2 80064.7378

a3 8.0644 b3 83498.2669

a4 8.6535 b4 43514.8709

a5 4.6494 b5 9066.1141

3.4. Robust Stability and Performance

Robust stability of the plant in the s-domain was checked with the theorem based on

the structured singular value (μ-value) [7,18]. The experimental investigation confirmed the

system stability with discrete control. The μ-value for robust stability is equal to 0.0050093

which means structured perturbations with norm less than 1
0.0050093 are allowable. In other

words, the stability is ensured for ‖Δ‖∞ < 1
0.0050093 . The robust performance of the designed

system is achieved, if and only if μ-value is less than 1 for each frequency. Unfortunately,

the controller found during the research does not satisfy robust performance criteria as the

maximum value of μ equals to 98.664. With respect to the robust performance it means that

the size of the perturbation matrix Δ must be limited to ‖Δ‖∞ < 1
98.664 .

4. Experiments

In order to ensure the same initial conditions for all objects the maximum voltage was

adjusted to the electromagnet which resulted in the attachment to the coil (0 postion). The

behaviour of the AMLS with the robust controller i.e. object position, object velocity and the

current in a coil are depicted in Figures 5, 6 and 7, respectively.
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Fig. 5. Object position

Fig. 6. Object velocity
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Fig. 7. Current in a coil

In contrast to 0.05297 kg and 0.05843 kg objects, objects of smaller weight were sta-

bilised in a set position with noticeable steady-state error. On the other hand, they reached

the steady state in a shorter time. Moreover, in Fig. 5 one can notice the impact of the optic

sensor characteristic on the object position as objects’ position change is observed at different

times while current change is noticed at the same moment.

5. Conclusions

The robust compensator dedicated to the AMLS with varying mass was able to stabilise

objects in the desired position with the decent performance and the steady-state error at cer-

tain level. Due to the complexity of the regulator and the presence of higher harmonics in

its structure very short sampling time was necessary to make the system behave properly.

In the future the weighting functions should be of higher order and be tuned maybe by ge-

netic algorithms or other optimisation methods to achieve improvement in performance of the

controller. Furthermore, information about the shape of the objects and their impact on the

control task should be also included into the design process. Very interesting and promising

approach may be a design of the hybrid controller combining the robust theory and e.g. fuzzy

logic or neural networks. Also work on non-linear robust controller so that the compensator

is invulnerable to mismatches between the model and the actual object is relevant.
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