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Adam Kowalewski�

Optimal Control
of an Infinite Order Hyperbolic System
with Multiple Time-Varying Lags

1. Introduction

Distributed parameter systems with delays can be used to describe many phenomena in

the real world. As is well known, heat conduction, properties of elastic-plastic material, fluid

dynamics, diffusion-reaction processes, transmission of the signals at the certain distance

by using electric long lines, etc., all lie within this area. The object that we are studying

(temperature, displacement, concentration, velocity, etc.) is usually referred to as the state.

We are interested in the case where the state satisfies proper differential equations that

are derived from basic physical laws, such as Newton’s law, Fourier’s law etc. The space

in which the state exists is called the state space, and the equation that the state satisfies is

called the state equation. In particular, we are interested in the cases where the state equations

are one of the following types: partial differential equations, integro-differential equations, or

abstract evolution equations.

Equations with deviating arguments appeared in the Euler’s works. However , system-

atic research of such equations began only in the 20th century, as a result of the develop-

ment of applied sciences and particularly automatic control theory. Consequently, equations

with deviating arguments are a well-known mathematical tool for representing many physical

problems . Historically, they have achieved great popularity among mathematicians, physists

and engineers.

During the recent twenty years, equations with deviating arguments have been applied

not only in applied mathematics, physics and automatic control, but also in some problems

of economy and biology. Currently, the theory of the equations with deviating arguments,

constitutes a very important subfield of mathematical control theory.

Consequently, the equations with deviating arguments are widely applied in the optimal

control problems of distributed parameter systems with time delays.
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Various optimization problems associated with the optimal control of distributed param-

eter systems with time delays appearing in the boundary conditions have been studied recently

by Wang (1975), Knowles (1978), Kowalewski (1987, 1993, 1995, 1998) and El-Saify (2005,

2006).

In Wang (1975), optimal control problems for second order parabolic systems with the

Neumann boundary conditions involving constant time delays were considered. Such sys-

tems constitute in a linear approximation, a universal mathematical model for many diffusion

processes in which time-delayed feedback signals are introduced at the boundary of a sys-

tem spatial domain. For example in the area of plasma control, it is of interest to confine

a plasma in a given bounded spatial domain Ω by introducing a finite electric potential bar-

rier or "magnetic mirror" surrounding Ω . For a collision-dominated plasma (Kowalewski and

Duda 1992), its particle density is describable by second order parabolic equation.

Due to particle inertia and finiteness of electric potential barrier or the magnetic mirror

field strength, the particle reflection at the domain boundary is not instantaneous. Conse-

quently, the particle flux at the boundary of Ω at any time depends on the flux of particles

which escaped earlier and reflected back into Ω at a later time. This leads to the Neumann

boundary conditions involving time delays. Necessary and sufficient conditions which the op-

timal controls must satisfy were derived. Estimates and a sufficient condition for the bound-

edness of solutions were obtained for second order parabolic systems with specified forms of

feedback controls.

Subsequently, in Knowles (1978), the time-optimal control problems of linear second

order parabolic systems with the Neumann boundary conditions involving constant time de-

lays were considered. Using the results of Wang (1975), the existence of a unique solution

of such parabolic systems were discussed. A characterization of the optimal control in terms

of the adjoint system is given. This characterization was used to derive specific properties of

the optimal control (bang-bangness, uniqueness, etc.). These results were also extended to

certain cases of nonlinear control without convexity and to certain fixed time problems.

Consequently, in Kowalewski (1987, 1993, 1995) linear quadratic problems for second

order hyperbolic systems with time delays given in the different form (constant time delays,

time-varying delays, etc.) were presented.

Finally, in El-Saify (2005, 2006) linear quadratic optimal distributed and boundary con-

trol problems for n×n second order and n×n infinite order parabolic time-varying lag sys-

tems were considered.

In particular, in Kowalewski (1998) the optimal distributed control problem for second

order hyperbolic system with multiple time-varying time delays appearing both in the state

equation and in the Neumann boundary condition was considered. The presented optimal

distributed control problem can be generalized onto the case of an infinite order time delay

hyperbolic system.

For this reason in this paper, we consider an optimal distributed control problem for

a linear infinite order hyperbolic system in which different multiple time-varying lags appear

both in the state equation and in the boundary condition.
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Sufficient conditions for the existence of a unique solution of such hyperbolic equa-

tion with the Neumann boundary condition are proved. The performance functional has the

quadratic form. The time horizon is fixed.

Finally, we impose some constraints on the distributed control. Necessary and sufficient

conditions of optimality with the quadratic performance functional and constrained control

are derived for the Neumann problem.

2. Preliminaries

Let Ω be a bounded open set of Rn with smooth boundary Γ .

We define the infinite order Sobolev space H∞{aα ,2}(Ω) of functions Φ(x) defined on

Ω (Dubinskii 1975, 1976) as follows

H∞{aα ,2}(Ω) =

{
Φ(x) ∈C∞(Ω) :

∞

∑
|α|=0

aα ‖ Dα Φ ‖2
2< ∞

}
(1)

where: C∞(Ω) is a space of infinite differentiable functions, aα ≥ 0 is a numerical sequence

and ‖ · ‖2 is a norm in the space L2(Ω), and

Dα =
∂ |α|

(∂x1)α1 . . .(∂xn)αn
, (2)

where: α = (α1, . . . ,αn) is a multi-index for differentiation, |α|=
n

∑
i=1

αi.

The space H−∞{aα ,2}(Ω) (Dubinskii 1975, 1976) is defined as the formal conjugate

space to the space H∞{aα ,2}(Ω), namely:

H−∞{aα ,2}(Ω) =

{
Ψ(x) : Ψ(x) =

∞

∑
|α|=0

(−1)|α|aαDαΨα(x)

}
(3)

where: Ψα ∈ L2(Ω) and
∞

∑
|α|=0

aα ‖Ψα ‖2
2 < ∞.

The duality pairing of the spaces H∞{aα ,2}(Ω) and H−∞{aα ,2}(Ω) is postulated by

the formula

〈Φ ,Ψ〉=
∞

∑
|α|=0

aα

∫
Ω

Ψα(x)Dα Φ(x) dx, (4)

where: Φ ∈ H∞{aα ,2}(Ω), Ψ ∈ H−∞{aα ,2}(Ω).

From above, H∞{aα ,2}(Ω) is everywhere dense in L2(Ω) with topological inclusions

and H−∞{aα ,2}(Ω) denotes the topological dual space with respect to L2(Ω) so we have the
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following chain:

H∞{aα ,2}(Ω)⊆ L2(Ω)⊆ H−∞{aα ,2}(Ω) . (5)

3. The infinite order hyperbolic equation

Let us consider the following linear infinite order hyperbolic equation

∂ 2y
∂ t2

+Ay = u (x, t) ∈ Ω × (0,T ) (6)

y(x,0) = y0(x) x ∈ Ω (7)

y′(x,0) = yI(x) x ∈ Ω (8)

∂y
∂ηA

(x, t) = q (x, t) ∈ Γ × (0,T ) (9)

where : Ω has the same properties as in the Section 2.

Q = Ω × (0,T ), Q̄ = Ω̄ × [0,T ], Σ = Γ × (0,T )

The operator ∂ 2

∂ t2 +A in the state equation (6) is an infinite order hyperbolic operator and

A (Dubinskii (1986) and El-Saify and Bahaa (2002)) is given by

Ay =

(
∞

∑
|α|=0

(−1)|α|aαD2α +1

)
y (10)

and

∞

∑
|α|=0

(−1)|α|aαD2α (11)

is an infinite order elliptic partial differential operator.

The operator A is a mapping of H∞{aα ,2} onto H−∞{aα ,2}. For this operator the bilin-

ear form Π(t;y,ϕ) = (Ay,ϕ)L2(Ω) is coercive on H∞{aα ,2} i.e. there exists λ > 0,λ ∈ IR such

that Π(t;y,ϕ)≥ λ ‖ y ‖2
H∞{aα ,2}. Moreover, we assume that ∀ y,ϕ ∈ H∞{aα ,2} the function

t → Π(t;y,ϕ) is continuously differentiable in [0,T ] and Π(t;y,ϕ) = Π(t;ϕ,y).

The equations (6)–(9) constitute a Neumann problem. The left-hand side of (9) is written

in the following form

∂y
∂ηA

=
∞

∑
|w|=0

(Dwy(u))cos(n,xi) = q(x, t) x ∈ Γ , t ∈ (0,T ) (12)
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where:
∂y

∂ηA
is a normal derivative at Γ , directed towards the exterior of Ω , cos(n,xi) is an

i-th direction cosine of n, with n being the normal at Γ exterior to Ω .

We shall formulate sufficient conditions for the existence of a unique solution of the

mixed initial-boundary value problem (6)–(9) for the cases where the function u is a element

of the space H0,1(Q) (i.e. u ∈ L2(0,T ;H0(Ω)) = L2(Q) and u′ = ∂u
∂ t ∈ L2(0,T ;H0(Ω))).

For this purpose for r = ∞ and s = 2, we introduce the Sobolev space H∞,2(Q) (Lions

and Magenes 1972, Vol. 2, p.6) defined by

H∞,2(Q) = H0(0,T ;H∞{aα ,2}(Ω))∩H2(0,T ;H0(Ω))

which is a Hilbert space normed by

⎛
⎝ T∫

0

‖ y(t) ‖2
H∞{aα ,2}(Ω) dt+ ‖ y ‖2

H2(0,T ;H0(Ω))

⎞
⎠

1/2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

where: H2(0,T ;H0(Ω)) denotes the Sobolev space of second order of functions defined on

(0,T ) and taking values in H0(Ω).

Consequently, the starting point for our considerations will be the following theorems

about the existence of a unique solution for the Neumann problem (6)–(9) which can be found

in Lions and Magenes (1972, Vol. 2, p. 103).

Theorem 1. Let y0, yI , q and u be given with y0 ∈ H∞{aα ,2}(Ω), yI ∈ H∞{aα ,2}(Ω),
q ∈ H∞,3(Σ), u ∈ H0,1(Q) and the following compatibility relations

∂w0

∂ηA
(x,0) = q(x,0) on Γ (14)

∂wI

∂ηA
(x,0)+

(
∂
∂ t

(
∂

∂ηA

))
w0(x,0) =

∂
∂ t

q(x,0) on Γ (15)

are fulfilled.

Moreover, the function w (Proposition 3.1 of Lions and Magenes (1972, Vol.2, p.100))
has the following properties:

w ∈ L2(0,T ;H∞{aα ,2}(Ω)), w′ ∈ L2(0,T ;H∞{aα ,2}(Ω)), w
′′′ ∈ L2(0,T ;H0(Ω)) (16)

with w(x,0) = w0 ∈ H∞{aα ,2}(Ω) and w′(x,0) = wI ∈ H∞{aα ,2}(Ω) (Proposition 3.2 of
Lions and Magenes (1972, Vol.2, p.100)). Then, there exists a unique solution y ∈ H∞,2(Q)

for the mixed initial-boundary value problem (6)–(9).
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4. The infinite order hyperbolic delay equation

Consider now the distributed-parameter system described by the following infinite order

hyperbolic delay equation

∂ 2y
∂ t2

+Ay+
m

∑
i=1

bi(x, t)y(x, t −hi(t)) = u, x ∈ Ω , t ∈ (0,T ) (17)

y(x, t ′) = Φ0(x, t ′) x ∈ Ω , t ′ ∈ [−Δ(0),0) (18)

y(x,0) = y0(x) x ∈ Ω (19)

y′(x,0) = yI(x) x ∈ Ω (20)

∂y
∂ηA

=
l

∑
s=1

cs(x, t)y(x, t − ks(t))+ v x ∈ Γ , t ∈ (0,T ) (21)

y(x, t ′) =Ψ0(x, t ′) x ∈ Γ , t ′ ∈ [−Δ(0),0) (22)

where: Ω has the same properties as in the Section 2.

y ≡ y(x, t;u), u ≡ u(x, t), v ≡ v(x, t)

Q = Ω × (0,T ), Q̄ = Ω̄ × [0,T ], Q0 = Ω × [−Δ(0),0),

Σ = Γ × (0,T ), Σ0 = Γ × [−Δ(0),0)

bi are given real C∞ functions defined on Q̄,

cs are given real C∞ functions defined on Σ ,

hi(t) and ks(t) are functions representing multiple time-varying lags,

Φ0,Ψ0 are initial functions defined on Q0 and Σ0 respectively.

Moreover,

Δ(0) = max{h1(0),h2(0), ...,hm(0),k1(0),k2(0), ...,kl(0)} (23)

The operator A is given by (10)

It is easy to notice that equations (17)–(22) constitute the Neumann problem. The left-hand

side of the Neumann boundary condition (21) may be written in the following form

∂y
∂ηA

= q(x, t) x ∈ Γ , t ∈ (0,T ) (24)

where:

q(x, t) =
l

∑
s=1

cs(x, t)y(x, t − ks(t))+ v(x, t) (25)
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Let t −hi(t) and t − ks(t) be strictly increasing functions, hi(t) and ks(t) being non-negative

in [0,T ] and also being C1 functions. Then, there exist the inverse functions of t − hi(t) and

t − ks(t) respectively.

Let us denote ri(t)
d f
= t − hi(t) and λs(t)

d f
= t − ks(t), then the inverse functions of ri(t)

and λs(t) have the following forms t = fi(ri) = ri + si(ri) and t = εs(rs) = rs +qs(rs), where

si(ri) and qs(rs) are time-varying predictions. Let fi(t) and εs(t) be the inverse functions of

t −hi(t) and t − ks(t) respectively.

Thus, we define the following iterations:

t̂o = 0

t̂1 = min{ f1(0), f2(0), ..., fm(0),ε1(0),ε2(0), ...,εl(0)}
t̂2 = min{ f1(t̂1), f2(t̂1), ..., fm(t̂1),ε1(t̂1),ε2(t̂1), ...,εl(t̂1)}
...

t̂ j = min
{

f1(t̂ j−1), f2(t̂ j−1), ..., fm(t̂ j−1),ε1(t̂ j−1),ε2(t̂ j−1), ...,εl(t̂ j−1)
}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

First we shall prove the existence of a unique solution of the mixed initial-boundary

value problem (17)–(22). We shall consider the case where the distributed control u belongs

to H0,1(Q).

The existence of a unique solution for the mixed initial-boundary value problem (17)–

(22) on the cylinder Q can be proved using a constructive method, i.e. solving at first equations

(17)–(22) on the subcylinder Q1 and in turn on Q2 , etc. until the procedure covers the whole

cylinder Q. In this way, the solution in the previous step determines the next one.

For simplicity, we introduce the following notations:

E j
∧
= (t̂ j−1, t̂ j), Q j = Ω ×E j, Q0 = Ω × [−Δ(0),0)

Σ j = Γ ×E j, Σo = Γ × [−Δ(0),0) for j = 1, . . . .
(27)

Using the Theorem 1, the following lemma can be proved.

Lemma 1. Let

u ∈ H0,1(Q) (28)

l j ∈ H0,1(Q j) (29)

where

l j(x, t) = u(x, t)−
m

∑
i=1

bi(x, t)y j−1(x, t −hi(t))

q j ∈ H∞,3
(
∑ j

)
(30)
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where

q j(x, t) =
l

∑
s=1

cs(x, t)y j−1(x, t − ks(t))+ v(x, t)

w j−1(·, t̂ j−1) = y j−1(·, t̂ j−1) ∈ H∞{aα ,2}(Ω) (31)

w′
j−1(·, t̂ j−1) = y′j−1(·, t̂ j−1) ∈ H∞{aα ,2}(Ω) (32)

and the following compatibility relations are fulfilled

∂w j−1

∂ηA
(x, t̂ j−1) = q j(x, t̂ j−1) on Γ (33)

∂w′
j−1

∂ηA
(x, t̂ j−1)+

(
∂
∂ t

(
∂

∂η A

))
w j−1(x, t̂ j−1) =

∂
∂ t

q j(x, t̂ j−1) on Γ (34)

Then, there exists a unique solution y j ∈ H∞,2(Q j) for the mixed initial-boundary value prob-
lem (17), (21), (31), (32).

Proof: For j = 1,∑m
i=1 y j−1

∣∣
Q0

(x, t −hi(t)) = ∑m
i=1 Φ0(x, t −hi(t)) and

∑l
s=1 y j−1

∣∣
Σ0
(x, t − ks(t)) = ∑l

s=1Ψ0(x, t − ks(t)) respectively. Then the assumptions (29),

(30), (31) and (32) are fulfilled if we assume that Φ0 ∈ H∞,2(Q0), v ∈ H∞,3(Σ) and Ψ0 ∈
H∞,3(Σ0). These assumptions are sufficient to ensure the existence of a unique solution

yl ∈ H∞,2(Q1) if y0 ∈ H∞{aα ,2}(Ω), yI ∈ H∞{aα ,2}(Ω) and the following compatibility

conditions are satisfied:

∂w0

∂ηA
(x,0) = q1(x,0) on Γ (35)

∂wI

∂ηA
(x,0)+

(
∂
∂ t

(
∂

∂η A

))
w0(x,0) =

∂
∂ t

q1(x,0) on Γ (36)

In order to extend the result to Q2 it is necessary to impose the compatibility relations

∂w1

∂ηA
(x, t̂1) = q2(x, t̂1) on Γ (37)

∂w′
1

∂ηA
(x, t̂1)+

(
∂
∂ t

(
∂

∂η A

))
w0(x, t̂1) =

∂
∂ t

q2(x, t̂1) on Γ (38)

and it is sufficient to verify that

l2 ∈ H0,1(Q2) (39)

w1(·, t̂1) = y1(·, t̂1) ∈ H∞{aα ,2}(Ω) (40)
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w′
1(·, t̂1) = y′1(·, t̂1) ∈ H∞{aα ,2}(Ω) (41)

q2 ∈ H∞,3(Σ2) (42)

First, using the solution in the previous step and the condition (28) we can prove immediately

the condition (39).

To verify (40) and (41) we use the fact (by Proposition 3.1 of Lions and Magenes 1972:

Vol.2, p. 100) that the function w1 has the following properties:

w1 ∈L2(E1;H∞{aα ,2}(Ω)), w′
1 ∈L2(E1;H∞{aα ,2}(Ω)), w

′′′
1 ∈L2(E1;H0(Ω))

Then, from the Theorem 3.1 of Lions and Magenes (1972, Vol. 1, p. 19), it follows that

the mappings t → w1(·, t) and t → w′
1(·, t) are continuous from [0, t̂1] → H∞{aα ,2}(Ω)

and [0, t̂1] → H∞{aα ,2}(Ω) respectively. Hence w1(·, t̂1) ∈ H∞{aα ,2}(Ω) and w′
1(·, t̂1) ∈

H∞{aα ,2}(Ω). But, from the Section 3 of Lions and Magenes (1972: Vol.2, p. 99), it follows

that w1(·, t̂1) = y1(·, t̂1) and w′
1(·, t̂1) = y′1(·, t̂1).

From the proceding results we can deduce that y1(·, t̂1) ∈ H∞{aα ,2}(Ω) and y′1(·, t̂1) ∈
H∞{aα ,2}(Ω). Again, from the the Trace Theorem (Lions and Magenes 1972, Vol. 2, p. 9)

y1 ∈ H∞/2(Q1) implies that y1 → y1|Σ1
is a linear continuous mapping of H∞,2(Q1) →

H∞,2(∑1) ⊂ H∞,3(∑1). Thus y1|∑1
∈ H∞,3(Σ1). Assuming that cs are C∞ functions and v ∈

H∞,3(Σ), the condition (42) is fulfilled. Then, there exists a unique solution y2 ∈ H∞,2(Q2).

We shall now extend our result to any Q j, j = 3, . . . .

Theorem 2. Let y0,yI ,Φ0,Ψ0,v and u be given with y0 ∈ H∞{aα ,2}(Ω), yI ∈ H∞{aα ,2}(Ω),
Φ0 ∈ H∞,2(Q0), Ψ0 ∈ H∞,3(Σ0), v ∈ H∞,3(∑), u ∈ H0,1(Q) and the compatibility relations
(35), (36) are fulfilled. Then, there exists a unique solution y ∈ H∞,2(Q) for time delay
infinite order hyperbolic equation (17)–(22) with y(·, t̂ j) ∈ H∞{aα ,2}(Ω) and y′(·, t̂ j) ∈
H∞{aα ,2}(Ω) for j = 1, . . . .

5. Problem formulation. Optimization Theorem

We shall formulate the optimal control problem in the context of the case where u ∈
H0,1(Q). Let us denote by U = H0,1(Q) the space of controls. The time horizon T is fixed in

our problem. The performance functional is given by

I(u) = λ1

∫
Q

| y(x, t;u)− zd |2 dxdt +λ2 ‖ u ‖2
H0,1(Q) (43)

where: λi ≥ 0 and λ1 +λ2 > 0; zd is a given element in L2(Q).
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Using the formula (13), the second term on the right-hand side of (43) can be written as

‖ u ‖2
H0,1(Q)= 2

T∫
0

〈u(t),u(t)〉L2(Ω)dt+
T∫

0

〈
∂u(t)

∂ t
,

∂u(t)
∂ t

〉
L2(Ω)

dt =
∫
Q

[(
2− ∂ 2

∂ t2

)
u
]

udxdt

(44)

Moreover, u(x,0) = u(x,T ) = 0,x ∈ Ω .

Finally, we assume the following constraint on controls:

u ∈Uad is a closed, convex subset of U. (45)

Let y(x, t;u) denote the solution of (17)–(22) at (x, t) corresponding to a given control

u∈Uad . We note from the Theorem 2 that for any u∈Uad performance functional (43) is well-

defined since y(u) ∈ H∞,2(Q)⊂ L2(Q). The solving of the stated optimal control problem is

equivalent to a seeking an u0 ∈Uad such that I(u0)≤ I(u) ∀u ∈Uad .

The starting point for our considerations will be the following theorem which can be

found in (Lions 1971, p. 10):

Theorem 3. Assume that the function u → I(u) is strictly convex, differentiable such that
I(u)→ +∞ as ‖ u ‖→ +∞, u ∈ Uad (the last hypothesis may be omitted if Uad is bounded).
Then, the unique element u0 in Uad satisfying I(u0) = in fu∈Uad I(u) is characterized by

I′(u0)(u−u0)≥ 0 ∀u ∈Uad (46)

For the above control problem, from the Theorem 3, it follows that for λ2 > 0 a unique

optimal control u0 exists; moreover u0 is characterized by the condition (46).

For the performance functional of form (44), the relation (46) can be expressed as

λ1

∫
Q

(y(u0)− zd)(y(u)− y(u0))dxdt +λ2〈u0,u−u0〉H0,1(Q) ≥ 0 ∀u ∈Uad (47)

In order to simplify (47), we introduce the adjoint equation and for every u ∈ Uad we

define the adjoint variable p = p(u) = p(x, t;u) as the solution of the following infinite order

hyperbolic equation

∂ 2 p(u)
∂ t2

+Ap(u)+
m

∑
i=1

bi(x, t + si(t))p(x, t + si(t);u)
[
1+ s′i(t)

]
= λ1(y(u)− zd)

x ∈ Ω , t ∈ (0,T −Δ(T ))
(48)
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∂ 2 p(u)
∂ t2

+Ap(u) = λ1(y(u)− zd) x ∈ Ω , t ∈ (T −Δ(T ),T ) (49)

p(x,T ;u) = 0 x ∈ Ω (50)

p′(x,T ;u) = 0 x ∈ Ω (51)

∂ p(u)
∂ηA

(x, t) =
l

∑
s=1

cs(x, t +qs(t))p(x, t +qs(t);u)
[
1+q′s(t)

]
x ∈ Γ , (52)

t ∈ (0,T −Δ(T ))

∂ p(u)
∂ηA

(x, t) = 0 x ∈ Γ , t ∈ (T −Δ(T ),T ) (53)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ(T ) = max{h1(T ),h2(T ), ...,hm(T ),k1(T ),k2(T ), ...,kl(T )}

∂ p(u)
∂ηA

(x, t) =
∞

∑
|w|=0

(Dw p(u))cos(n,xi)
(54)

and the operator A is given by (10).

Using the Theorem 2, one may prove the following result.

Lemma 2. Let the hypothesis of Theorem 2 be satisfied. Then, for given zd ∈ L2(Q) and any
u∈H0,1(Q), there exists a unique solution p(u)∈H∞,2(Q) for the adjoint problem (48)–(53).

Using the adjoint equation (48)–(53), we simplify the first component of the left-hand

side of (47). Consequently, after transformations we get

λ1

∫
Q

(y(u0)− zd)(y(u)− y(u0))dxdt =

=
∫
Q

p(u0)(u−u0)dxdt (55)

Using the formula (44) and substituting (55) into (47) gives

∫
Q

[
p(u0)+λ2

(
2− ∂ 2

∂ t2

)
u0

]
(u−u0)dxdt ≥ 0 ∀u ∈Uad , (56)

Theorem 4. For the problem (17)–(22) with the cost function (43) with zd ∈ L2(Q) and λ2 > 0

and with constraints on controls (45), there exists a unique optimal control u0 which satisfies
the maximum condition (56).

We must notice that the conditions of optimality derived above (Theorem 4) do not

provide any analytical formula for the optimal control. Thus, we turn from the exact determi-

nation of the optimal control and we have to use approximation methods.
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In the case of performance functional (43) with λ1 > 0 and λ2 = 0, the optimal control

problem reduces to minimization of the functional on a closed and convex subset in a Hilbert

space. Then the optimization problem is equivalent to a quadratic programming one which

can be solved by the use of the well-known algorithms, e.g. Gilbert’s (1966).

A practical application of Gilbert’s algorithm to an optimal control problem for time

delay parabolic system was presented in Kowalewski and Duda (1992). Using Gilbert’s algo-

rithm, a one-dimensional numerical example of the plasma control process was solved.

6. Conclusions

The results presented in the paper can be treated as a generalization of the results ob-

tained by Kowalewski (1987, 1993, 1995, 1998) and El-Saify (2006) to the case of a dis-

tributed infinite order hyperbolic system with different multiple time-varying lags appearing

both in the state equations and in the boundary conditions.

Sufficient conditions for the existence of a unique solution of such hyperbolic equation

are proved – Lemma 1 and Theorem 2.

The optimal distributed control was characterized by the adjoint equation – Lemma 2.

By using this characterization, necessary and sufficient conditions of optimality were proved

– Theorem 4.

In this paper we have considered the optimal infinite order hyperbolic system where

different multiple time-varying lags appear both in the state equation and in the Neumann

boundary condition. We can also derived conditions of optimality for a more complex case

of such distributed infinite order hyperbolic system with the Dirichlet boundary condition.

Finally, we can consider a more complex case of optimal boundary control for a distributed

infinite order hyperbolic system in which different multiple time lags appear in the state

equation and in the boundary condition simultaneously.

The ideas mentioned above will be developed in forthcoming papers.
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