COMPUTER SCIENCE e VOL. 11 e 2010

WrODZIMIERZ FUNIKA™ ™ MATEUSZ KUPISz*, PAWEL. KOPEREK"

TOWARDS AUTONOMIC SEMANTIC-BASED
MANAGEMENT OF DISTRIBUTED APPLICATIONS

In this paper we present our approach to the management of distributed systems based
on semantic description of available resources. We use ontologies for a semantic description
of the monitored system and other aspects of monitoring and management (such as metrics)
and introduce a feedback loop on underlying infrastructure. Such an approach allows to
automate monitoring and the ease the work of administrator. We introduce concepts behind
a novel automatic management system, SAMM, developed within our research. We discuss
the core mechanisms used in the system — the estimation of future measurements, approach
to knowledge gathering, and the process of decision making. Then we provide some details
on the architecture and implementation of SANMM.

Keywords: autonomicity, monitoring, management, ontology, Eucalyptus

W KIERUNKU AUTONOMICZNEGO,
OPIERAJACEGO SIE NA OPISIE SEMANTYCZNYM,
SYSTEMU ZARZADZANIA APLIKACJAMI ROZPROSZONYMI

Publikacja ta przedstawia nowe podejscie do zagadnien monitorowania i zarzadzania Sys-
temami rozproszonymi, wykorzystujace ontologiczny opis zasobéw przez nie udostepnia-
nych. Podejscie to wykorzystuje ontologie do opisu semantycznego monitorowanego syste-
mu, a takze innych aspektéw monitorowania i zarzadzania nim (np. dostepne metryki) oraz
wprowadza sprzezenie zwrotne na monitorowanej infrastrukturze. Pozwala to na automatyza-
cje procesu monitorowania i zarzadzania w celu ulatwienia pracy administratora. Publikac-
Jja opisuje takze dzialanie nowatorskiego systemu SAMM, ktéry powstal w wyniku badaii.
Przedstawione zostaly réwniez koncepcje dotyczace estymacji pomiaréw, tworzenia baz
wiedzy oraz procesu podejmowania decyzji. Artykul opisuje zaréwno architekture SAMM-a,
jak i szczegély implementacyjne.

Stowa kluczowe: autonomicznosé, monitorowanie, zarzadzanie, ontologia, Eucalyptus

1. Introduction

There are many tools which help in the management of distributed applications. They
provide the power of controlling both hardware and software resources. The admin-
istrator’s role is dual: on the one hand he/she has to find a configuration which will

* Department of Computer Science, AGH University of Science and Technology, al. Mickie-
wicza 30, 30-059, Krakéw, Poland, {funika,kupisz,koperek}@agh.edu.pl
** ACC CYFRONET AGH, ul. Nawojki 11, 30-950 Krakéw, Poland, funika®@agh.edu.pl

51

52 Wilodzimierz Funika, Mateusz Kupisz, Pawel Koperek

use resources optimally and on the other hand it is an administrator’s responsibility
to ensure that all SLA conditions are fulfilled. SLA specifies precisely which aspects
of system are crucial for operation. Therefore terms of this agreement define which
resource parameters should be observed. Performance monitoring and ensuring prop-
er quality of service become more and more important nowadays, especially in widely
discussed cloud systems [1].

Monitoring and management systems are usually dedicated to particular hard-
ware and software environments. They provide fine-grained monitoring data and
system-specific management options. This gives a high level of control and enables
the usage of all available capabilities. Such an approach may be overwhelming at the
beginning. The administrator has to gain knowledge about the architecture of under-
lying systems and how to use the monitoring and management software [4]. There is
no tool which would be able to monitor and manage various systems and allows for
comprehensive control of them.

Monitoring and management are very often loosely coupled. It is human who
needs to analyse raw monitoring data and based on it to execute appropriate actions.
Automating common activities would be a great help to the administrator. The prob-
lem is that in most cases the data supplied by a monitoring system lack additional
information about their actual meaning, i.e. semantics in the context of system op-
eration. Such an additional description might be used for automatic processing and
reasoning. There has been done some work concerning semantic monitoring. The work
we are presenting in the paper is based on the results of research in this domain.

This paper is organized as follows: in Section 2 we discuss related research, next,
in Section 4, we explain our concept of automation of management, and in Section
5 we present the architecture in depth. The next section focuses on implementation
details. After that we briefly overview the implementation progress and then in section
7 our tests and their results. In the final section we discuss our conclusions and outline
future work.

2. Related work

As previously mentioned there are a number of results of research in the area of
automatic management, among others, based on semantics. Due to limited space we
are concentrating on a constrained part of them.

In [8] a QoS-guarantees driven performance model is proposed. The model de-
scribes development, deployment and operations which allow to meet QoS and SLA
constraints. An algorithm that allows to reduce computation costs at runtime is in-
troduced. The constraints defined in form of SLA and QoS are also considered in
the optimization process to avoid violation of agreements. Such an approach to man-
agement was tested on a cloud system, called CERAS running up to 1000 virtual
machines and showed remarkable benefits in terms of their profit function gain and
scalability. The main drawback of this on-going research is focusing on optimizing
only one aspect of the system.

Towards autonomic semantic-based management of distributed applications 53

The [12] shows another approach to monitoring of SLA contract in distribut-
ed environment. Unfortunately, it is limited only to web services. SLA contract is
formalized using of WSFL and BTP/ebXML notations. Monitoring is achieved by
web service instrumentation. The gathered data is used in validation against contract
conditions. Any violations are saved by the computing engine so that later on the
administrator can tune underlying resources or the manager can renegotiate Service
Level Agreements.

SemMon [5] project is aimed to create a tool providing semantic analysis of the
monitoring data on a distributed system. Knowledge about effective tool usage (the
relevance and accuracy of the metrics used during a system examination) may be
shared within the research team with a built-in scoring system. All resources and
metrics used are elements of a specific ontology [13] which provides a semantic de-
scription of gathered data. Thus SemMon is enabled to interpret data and can trig-
ger indispensable actions, e.g. provide some suitable notifications (alarms) to users
or launch additional, semantically close measurements. Its capabilities for integra-
tion with distributed computing environments were proven by integration with the
ProActive framework [2] (please see [6, 7]).

IC2D [2] is an example of monitoring and management system dedicated to the
ProActive framework. It is able to visualize the current state of computation by
drawing activities (tasks) on every hardware or virtual node. Being dedicated to
ProActive it allows for the monitoring of specific metrics like request queue length or
response time. It also enables fine-grained management operations such as migrating
computational tasks between nodes.

Oceano [3] is a prototype of infrastructure for a hosting center which is scalable
and highly available. It is based on the observation that usually customers’ systems
experience loads which do not require a lot of resources for effective handling. Unfor-
tunately, from time to time extremely high loads occur. Ensuring that such situations
will be handled flawlessly requires reservation of big amount of resources which remain
idle for most of the time. Of course this leads to unnecessary increase of system op-
eration cost. Oceano mitigates this problem by sharing resources between customers
who don’t have big requirements in the particular moment and those who are facing
high load peaks. Whenever high load occurs Oceano automatically “borrows” unused
servers to guarantee that SLA conditions remain in tact.

3. Research objectives

In this paper we present our concept of autonomic management of distributed appli-
cations. It is based on a generic system description and feedback that our application
can take on a monitored system. Our research is focused on exploiting the semantic
description of resources and providing feedback in from of predefined actions from the
monitoring facility to the managed system.

We use ontologies because they provide a universal medium for describing mon-
itored system’s resources, metrics that are monitored as well as the Service Level

54 Wilodzimierz Funika, Mateusz Kupisz, Pawel Koperek

Agreement that we want to fulfil. We also process monitoring data and give it seman-
tic meaning. But our usage of ontologies goes beyond this. We use it also to describe
actions that can be taken as a feedback on the monitored system so that an SLA con-
tract would stay in tact. Since ontologies are easily extensible we are not tied to the
underlying system w.r.t. neither metrics nor feedback actions that come as standard.

Automatic management requires a precise and consistent specification of system
state evaluation methods. Without these information it would be impossible to deter-
mine if application is functioning properly and which actions should be executed. The
SLA is a perfect source of such description. It contains specification of parameters con-
sidered crucial for successful operation and includes Quality of Service requirements
which can be used to compare the state from different points of time.

With this approach automation of common administrative tasks may be achieved.
Such software feature could bring significant cost reduction. Administrative effort
could be decreased and the quality of management may be improved. The adminis-
trator would have to define the conditions under which the system is considered as
operating properly and monitor the general situation in environment.

Advantages of such tool should be especially noticeable in cloud systems where
one pay for every time unit when using each virtual machine. Depending on the current
demand for processing power, thanks to our concept of feedback, virtual machines
could be turned on only when needed.

4. Semantic-based Autonomic Monitoring and Management

In this section we provide an introduction into our concept of autonomic monitoring
and management based on semantics. First, we discuss a general overview of main
design assumptions and what requirements for this kind of tool were considered. Next,
we come to the architecture of the system — its modules and their roles in proper
functioning as a whole.

4.1. Concepts

The main problem addressed by this research is to help administrators to handle
SLA/QoS and reduce costs of the exploited infrastructure. When working with the
SLA/QoS parameters, the administrator has to perform following activities:

1. Recognize the requirements against the managed resources. The administrator
needs to profoundly understand what terms does the SLA contain and their
consequences. This step is necessary, e.g. to properly choose the resources which
will be used to realize the contract.

2. Monitor infrastructure with various tools and metrics. The fulfilment of SLA has
to be constantly monitored. Information about system utilization is required to
determine how users should be charged for specific service usage (or to which of
them any contractual penalties should be paid). It is also very helpful for the

Towards autonomic semantic-based management of distributed applications 55

service provider to know what is the current status of particular resources to
determine which of them makes problems.

3. Execute some actions to optimize the usage of both hardware and software re-
sources. When the system state is well known and the system administrator has
the whole required knowledge about actions which can be executed, the usage
of resources can be optimized. The service provider can e.g. migrate virtual ma-
chines with low CPU usage to a single computational node and turn off some
physical machines. The cost of infrastructure usage would be lowered without
violating SLA terms.

4. Gain and document the knowledge and experience about how the system func-
tions. All the information about the system’s current status, taken actions and
their implications has to be documented for further usage. Actions may lead to
some unexpected results and costs. A deep investigation of all conditions may be
required to determine a real source of problems and to avoid repeating mistakes
anew.

These activities may be automated:

1. Required information can be extracted from SLA in digital form. SLA may be
used directly to determine what resources are in the scope of interest, how they
should be monitored and how to evaluate costs.

2. Monitoring of resources can be automated by using one of existing systems.
In our approach the observation capabilities are extended with the ability to
interact with the resources under monitoring. Furthermore the observed system
is constantly checked if it is in the proper state. If any SLA violation occurs, an
alarm should be raised. The information contained in an alarm message should
help to pinpoint resources that have got problems.

3. The total cost of hardware and software usage — including penalties for violation
of SLA terms, should be periodically computed. Based on this, it may be decided
to perform some actions to reduce the financial charges. It should even be possible
to decide, that accepting some violations may actually be more cost-effective than
executing actions which would prevent them.

4. All information about actions and and measurements is stored in a database —
it may be used further to perform some deeper analysis.

The system could function in form of a closed loop:

. The measurements are made on the managed system.
. Values are used to determine the current system state.
. Decisions about taking actions are made.

= W N =

. Actions are performed on the managed system.

In order to avoid creating the framework from scratch, thus to speedup the real-
ization of the concept, one of the existing systems should be considered as a basis for
research.

56 Wiodzimierz Funika, Mateusz Kupisz, Pawel Koperek

5. Architecture

Figure 1 depicts the architecture of the discussed system. The structure should be
modular — created of loosely coupled components with well-defined interfaces. This
would enable the components to be easily reused in other software projects.

Eucalyptus Node
Cloud Node
Actions N L . Monitoring
y/ pZ \ \ dat a

Action
S A4
Executor E“UES““)
e
= o .
Action < P V

execution
requests

N - 4
Estimated T ‘ V.
measurements \

_ Metric values/

Ontology
<> Estimated metric <

values ‘

O ‘ - Database

SjuaWBINSEIN

Fig. 1. Architecture of SAMM

The Measuring component gathers values from the registered resources accord-
ing to their monitoring capabilities. The measurements are done when a specific metric
value is assessed. Each measurement is done in the context of a specific resource of
a well defined type, its capability to perform specific measurements and at a specific
point in time. All this information is stored in database for further use in other mod-
ules e.g. in Estimator. Measurements may be taken using different technologies e.g.
with JMX [14]. An abstract model of transport technology (the ”transport layer”)
has to be prepared. To introduce a new way of measurements one should have to
simply provide an implementation of a specific interface and, if necessary, prepare a
Graphical User Interface to handle a new type of addressing. Metrics component
computes the values of metrics enabling the evaluation of a current system state.
Metrics are constantly being observed in case of any SLA violations. Each metric
value is computed periodically on the basis of the most recent measurements. As
mentioned above, required data is obtained from the Measuring component. The Es-

Towards autonomic semantic-based management of distributed applications 57

timator component provides estimations of future measurements values in a specific
time frame. Estimations are used by the Decisions making module. The latter one
calculates the total cost of system functioning according to the information provided
by SLA and predicts a future level of resources usage with the estimated values of
metrics. Such predictions are used then to rate the effects of all actions possible to
execute on the managed system — including the case when no action is currently done.
Then decisions may be made on the basis of the following questions:

e Whether any action should be currently carried out?

o If yes — which action?

e On which resource?

Once all the data about further management steps are collected, the execution
of changes to the system state is delegated to the Action Executor module, which
performs the requested actions. As mentioned above — to be able to manage the sys-
tem, we need to know what are the implications of the actions taken. Such knowledge,
at least to some basic extent, has to be collected before the current system operation.
This is the responsibility of the Experiments component. It performs so called ex-
periments: collects measurement values within a defined time frame before and after
an action execution in a separate environment. With such data it discovers which
measurement series were actually affected. This knowledge is then stored and used to
decide what should be done at particular moments.

The Knowledge component is a common source of semantic information for
other components. Types of resources, relationships between them, their capabilities,
available monitoring metrics are stored within it in form of ontology. Thanks to flexi-
bility of such kind of description, information regarding different aspects of system are
bound to each other. Results of queries to such database include these relationships
and are extended with some inferred facts added by automatic reasoner. Listing of
all metrics which can be used to monitor a resource may be considered as a sample
query to Knowledge component. Such query finds specified resource type, checks
what measurements can be done on this resource and then looks for metrics which
can be computed basing on provided information.

6. Implementation

We have developed a prototype Semantic-Based Automatic Monitoring and Manage-
ment system — SAMM. It is based on the previously created semantic monitoring
system — SemMon, and uses the same ontology-based approach for resources descrip-
tion. Actions are also described in form of an ontology. Therefore the set of available
means of interaction of the administrator and system may be easily extended. Sem-
Mon is capable of interpreting data and provides some suitable notifications (alarms)
to the user as well as can launch additional, semantically close measurements.

To extend the capabilities of SemMon, the latter was rewritten in form of OSGi
[11] bundles. This greatly improved the internal architecture and made the devel-
opment of new functions easier. Another improvement is the ability to change the

58 Wiodzimierz Funika, Mateusz Kupisz, Pawet Koperek

ontology used for describing system resources and metrics. To use another ontology
the administrator simply has to deploy another bundle providing an implementation
of the service interface responsible for providing necessary knowledge.

The most important contribution in the presented research, which makes SAMM
not only the successor of SemMon but a completely new and independent system, is
the capability of making decisions how to interact with the managed system. During
maintenance, the proper process of decision making on introducing changes to the
system is crucial for its uninterrupted operation. The service provider has to answer
three key questions:

1. Whether any action is needed to improve the system usage or to optimize main-
tenance costs?

2. What action has to be done?

3. Which resource has the action has to carried out on?

The key factor which helps in answering these questions is the total cost of the
functioning of the system. We consider this cost as a sum of all charges put on service
providers since the managed system starts its normal operation. A single charge ele-
ment in this sum is defined as a multiplication of a measurable value indicating the
level of usage of a specific resource (e.g. CPU utilization metric) and a charge for one
unit of resource measured with that value. It is assumed that all costs are delivered
to the system through SLA.

The presented definition of the total system operation was used to create an exe-
cution strategy of actions. The strategy answers addressed questions in the following
way:

1. An action is executed only if it would lead to gain an increase in the cost smaller
compared to a situation when no action would be executed. In case there are
several actions which meet this criterion, an action with the smallest cost increase
is chosen.

2. and 3. All the actions possible to execute on resources are evaluated — their
impact on the system execution cost is computed. The pair action—resource with
the best cost optimization is chosen.

The evaluation of impact on the system operation cost is based on the infor-
mation gathered during the experiments phase as well as on the estimates of future
measurements. The experiments phase is a time frame when SAMM gains knowledge
about the managed system. It tries to execute actions and observes their impact on
the environment. A single experiment consists of the following steps:

1. Recording measurements in a defined time frame before an action execution.
2. Execution of a particular action on a specified resource.

3. Recording measurements in a defined time frame after the action execution.
4. Discovery of which measurement series were actually affected by the action.

The estimation of future measurements exploits machine learning algorithms. At
first, a model for specific data series is created with use of historical data from a

Towards autonomic semantic-based management of distributed applications 59

specified period of time. When a prediction is needed, the most recent values are pro-
cessed by the model and estimations are made. All models are periodically updated
by recently gathered values. To ensure the highest possible quality of the implemen-
tations of machine learning algorithms, an existing framework — WEKA [15], with a
big user-base and many successful deployments, has been chosen.

In the estimation process, some classification algorithms were used. From a wide
range of different approaches, we selected those ones which could operate on contin-
uous values space. As such we consider procedures which didn’t require additional
discretization of analysed data. Sequences of historical measurements values were cut
into tuples of length N and passed as input to the algorithms. The result of processing
— the classification, was used as a prediction of next measurements.

7. Results

7.1. Description of test environment

Our test scenario involves using SAMM to monitor and take actions on virtual ma-
chines running in private Eucalyptus cloud environment. The scenario itself reflects
common real-life situation where the user deploys his/her web application to a Ama-
zon EC2 Cloud service. The test should reveal prospective cost reduction of running
virtual machines in EC2 environment without scarifying the response time of the
application to the application user.

Since our hardware resources were limited the test server was a single machine
with the specification as shown in Table 1 running Apache HTTPD server (as a load
balancer) and all necessary Eucalyptus services.

Table 1
Server’s specification

CPU Intel Pentium Dual-Core E5300 @ 2.6GHz
Memory | 4GB RAM
OS Ubuntu 10.04 64-bit

We should note that running all Eucalyptus components (Cloud Controller, Wal-
rus, Cluster Controller, Storage Controller, Node Controller) on a single machine is
not a recommended setup and has its limitations (like the impossibility to configure
virtual local area networks) however it should not affect our scenario anyway.

We have prepared a Eucalyptus image of Ubuntu 10.04 with Tomcat 6.0 in-
stalled with deployed mvc-basic web application (it is a sample application provided
by SpringSource which presents basic capabilities of SpringMVC framework). Tom-
cat is configured in a way so that it automatically looks for other Tomcat instances
running in the local network and builds up a cluster.

Apache HTTPD server runs on the same computer as Eucalyptus. It is used as
a load balancer using prozy_balancer module. Balancer members use HTTP protocol

60 Wiodzimierz Funika, Mateusz Kupisz, Pawet Koperek

to access web application content served by Tomcat instances. Balancing is realized
by equally distributing HTTP request among all active balance members (Tomcat
instances).

7.2. Test procedure description

The first step to allow SAMM to function is to perform the “Initial learning”. To do
so, we ran one virtual machine in Eucalyptus environment and put moderate load
on it using Apache jMeter. The “moderate load” is such a load that won’t overload
(“kill”) the machine but also will moderately stress it. We have found that emulating
15 clients (setting Apache jMeter to use 15 independent threads to test) puts such a
load. This way, when SAMM tests what kind of consequences different actions bring
(this is the main purpose to run “Initial learning”), it can find both positive and
negative effects (higher or lower load) of them.

The test itself was to check what (if any) action SAMM will decide to undertake
to reduce the cost of running the system. To do so, we have defined an SLA agreement
as follows:

e Cost of running a virtual machine: 0.09 per hour.
e Cost of breaking Tomcat Response time QoS agreements: 10 per each measure-
ment exceeding given threshold.

The metric used for second condition was measuring average Tomcat response
time from last two measurements. By default our measurements are taken every 20 sec-
onds. It means that whenever the average response time increases above a threshold
of 1.0 (which means that the average time to handle the values from the last two
measurements exceeded 1s) we would have to pay extra 10*metric_value. We use such
an “artificial” cost and metric to guarantee the QoS. The cost of running a virtual
machine corresponds to the cost of running one in the Amazon EC2 environment.

To test SAMM’s behaviour we emulated 35 clients constantly accessing our web
application. When SAMM estimated that executing an action would bring a overall
cost reduction over estimated cost without executing an action it undertook a “Start
virtual machine” action which started up a new instance of virtual machine serving
our web application.

7.3. Test results

Figure 2 shows the momentary costs of running the system once SAMM has executed
the action and the momentary costs of running the system if SAMM wouldn’t do it.
As it can be seen in the graph the momentary cost after SAMM has started a second
virtual machine was mostly keeping close to 0 (we only paid for running the machine
and not the extra penalty for not complying to QoS requirements).

Towards autonomic semantic-based management of distributed applications 61

Momentary cost with and without SAMM

20 T T T T T T T

With SAMM ——
18 | Without SAMM 1
16 1
14 | .

12| [.

Cost
=
o

o N A~ O @
T
L

L H. j_‘; 1 L L L 1
0 5 10 15 20 25 30 35 40 45
Measurement over 10 min period

Fig. 2. Momentary cost

The overall (total) cost of running the system in the given 10 minutes time period
would be:

o With SAMM: ~140
o Without SAMM: ~228

This, however, does not include the possible cost of executing the action itself. It is
possible that the action execution may introduce an additional cost that would need
some amortization time.

8. Conclusions and future work

SAMM is one of the first monitoring and management tools which aims to provide a
integrated, automatic and customizable framework for distributed applications. Being
based on its predecessor SemMon, it uses the semantics of monitoring data to validate
QoS and SLA parameters in distributed environment. Estimating future metric val-
ues enables to predict possible contract violation and executes actions to prevent it.
Actions can be also taken to optimize resources usage which may result in reasonable
cost reduction. One of the main SAMM’s features is that it is not dependent on the
underlying system. Ontologies are used to describe resources, metrics, and actions, as
well as the necessary quality parameters. This makes it easily extensible to support
various distributed systems (in terms of resource monitoring) as well as to undertake
system-specific actions.

Provided results show that using such tools may bring actual costs reduction.
Although our testing scenario was not as complex as modern systems used in pro-

62 Wilodzimierz Funika, Mateusz Kupisz, Pawel Koperek

duction environments, it proved that to some degree the decisioning process may be
entrusted to the machine learning algorithms.

Our future work will focus on tuning the Decisions making module. Another
direction for the system evolution is to introduce support for different time frames
of estimation. We would like also to add support for more specific systems. As a
first goal we would like to integrate support for gathering data from OCM compliant

monitoring systems [10] as well as to add native support for collecting data from the
NAGIOS system. [9].

Acknowledgements

The research presented in this paper has been partially supported by the Furopean
Union within the Furopean Regional Development Fund program no. POIG.02.03.00-
00-007/08-00 as part of the PL-Grid Project (www.plgrid.pl) and ACC Cyfronet AGH
grant 500-08.

References

[1] Buyya R. et al.: Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generations of Computer
Systems, vol. 25, 2009, pp. 599-616.

[2] Caromel D. et al.: ProActive Parallel Suite. http://proactive.inria.fr/, last
accessed August 7, 2010.

[3] Fakhouri S., Fong L., Goldszmidt G., Kalantar M., Krishnakumar S., Pazel D.P.,
Pershing J., Rochwerger B.: Oceano — SLA Based Management of a Computing
Utility. http://www.scientificcommons.org/42509179, 2001.

[4] Funika W. et al.: Adapting a HEP Application for Running on the Grid. Com-
puting and Informatics, vol. 28, 2009, pp. 353-367.

[5] Funika W., Godowski P., Pegiel P.: A Semantic-Oriented Platform for Perfor-
mance Monitoring of Distributed Java Applications. Proc. of International Con-
ference on Computational Science, 2008.

[6] Funika W., Kupisz M., Koperek P.: Integration of the SemMon semantic moni-
toring tool into the ProActive platform. Proc. of Cracow Grid Workshop, Krakdéw,
2009, pp. 156-163.

[7] Funika W., Caromel D., Koperek P., Kupisz M.: Integration of ProActive and the
semantic-oriented tool SemMon. Proc. of CoreGRID workshop, in conjunction
with EuroPar 2009 Conference, Delft, The Netherlands, 2010.

[8] Li J., Chinneck J., Litoiu M., Iszlai G.: Performance Model Driven QoS Guaran-
tees and Optimization in Clouds. Proc. of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing, 2009.

[9] NAGIOS website http://www.nagios.org, last accessed August 12, 2010.

[10] OCM-G website. http://grid.cyfronet.pl/ocmg/, last accessed August 5,
2010.

Towards autonomic semantic-based management of distributed applications 63

[11] OSGi website http://www.osgi.org, last accessed August 10, 2010.

[12] Sahai A., Machiraju V., Sayal M., Jie Jin L., Casati F.: Automated SLA Moni-
toring for Web Services. Proc. of IEEE/IFIP DSOM, 2002, pp. 28-41.

[13] Bechhofer S. et al.: W3C, OWL Web Ontology Language Reference. http://www.
w3.org/TR/owl-ref/, last accessed August 3, 2010.

[14] Sun Microsystems, Inc.: Java Management Extensions (JMX) Technology. http:
//java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement,
last accessed July 22, 2010.

[15] WEKA framework website wuw.cs.waikato.ac.nz/ml/weka/, last accessed July
25, 2010.

