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1. Introduction

The median filter is a classic tool for impulse noise reduction in grayscale images. It
replaces the central pixel in a mask (often square-shaped) with the pixel with the median
intensity within this neighborhood. This rank (and thus non-linear) approach is robust to
significant distortions (noise) on single pixels, which would strongly affect e.g. the mean
value in the mask.

The neighborhood window W (also called a “window”) usually contains an odd num-
ber of pixels, which guarantees that the median will be the value of some pixel existing in
the neighborhood. This is undoubtedly beneficial. Other assets of a median filter are easi-
ness of implementation and high speed.

Multi-channel (e.g. RGB) images require a different definition for median filte-
ring, because there is no natural ordering of elements in vector space. The observa-
tion that logically motivated the vector median filter (VMF) idea was that the (scalar)
median of the neighborhood may alternatively be pointed out with the formula:
med = arg ;m‘?/ 2 fi—=f j‘- It is then enough to replace the absolute values of the differen-

i€ i

ces between scalars with distances between vector according to chosen metric (e.g., the
Euclidean one).

There are many alternatives of VMF but almost all the work is dedicated to improving
the resulting image quality. We are not aware of any serious considerations on how to im-
plement color median-like filters efficiently.

In this paper we present a theoretical algorithm for worst-case optimized scalar median
finding and an efficient implementation of VMF. Section 2 discusses various implementa-
tions for scalar (grayscale) median filtering. Section 3 briefly surveys color median filtering
algorithms. Section 4 presents our novel implementation of VMF. Section 5 contains exper-
imental tests. The last section concludes and points out avenues for future research.

* Computer Engineering Department, Technical University of £.6dz

1021



1022 Sebastian Stolinski, Szymon Grabowski, Wojciech Bieniecki

2. The scalar median filter — theory and practice

In this paper we consider square masks only. We assume the input image
I={l,,:0sx<n-1,0<y<m-1,0<Il , <L-1}. Inplain words, the image has nm pix-
els and the intensity has L levels. Assume the point (0, 0) is the top left corner, so the top line
will be called Oth line etc. Let the radius of the mask be denoted with r, so |W| = (2r + 1)2.
The most straightforward implementation of the median filter is to sort all |W| intensities
and select the median one, for each pixel of the image. It can be achieved in
O(W|log|W|)=O(r*logr) time using e.g. merge sort. Note however that replacing
a comparison based sort with counting sort yields O(r2 + L) time. For large enough masks
we have L = 0(r2) and then counting sort complexity reduces to O(rz). In the opposite case,
L >> %, we can replace counting sort with e.g. 2-pass radix sort, and obtain O(r2 +JL )
complexity. In general, k-pass radix sort leads to O(k(r2 VK )) time, which is optimized
for k= log » L, and the time then becomes O(r2 log » L) = O(r2 log, L).

An alternative to sorting is using a worst-case linear-time selection algorithm, which is
only a theoretical option: very complicated [3] and/or accompanied with an impractically
high constant [2]. This way, however, the filtering time gets O(rz).

We can achieve this complexity with simpler and more practical means. The current
mask of size |W| shares (2r+1)*2r pixels from the previous mask. Assume that the image
is scanned along the horizontal lines and also that we remember the sorted intensities for the
previous mask. For the current pixel we sort the 27 + 1 intensities from the rightmost col-
umn of the mask, in O(rlogr) time, and then merge the old mask with the new 2r + 1 values,
“dropping” on the way the 2r + 1 values corresponding to the leftmost column of the previ-
ous mask. This has O(rlogr +r2) = O(rz) time, as promised.

Note that with no approach presented so far processing a single pixel cannot be
achieved in time sublinear in the mask size. Yet in 1979 Huang [11] presented a surprisingly
simple and efficient median filter implementation, based on incremental updates of the in-
tensity histogram. When moving from one pixel to its successor (e.g. along a horizontal
line), only 2r + 1 additions and 2r + 1 subtractions need to be done to update the histogram.
Now, the median can be found from the histogram via performing at most L additions,
which results in O(r + L) worst-case time per pixel but typically it works much faster, as
the median values for two successive masks are usually close and it is enough to trace the
histogram bins close to the one containing the median for the previous mask. Another
speedup idea is to use wide machine words (SSE) (applied for example in [13]), in order
to inspect several (@(w/logr) in theory) histogram bins in parallel. Still, if we want a mo-
re radical improvement in worst-case time complexity, we may represent the histogram with
a balanced binary search tree, with intensity levels as keys and the size of each subtree
stored in the corresponding root (maintaining those counters does not deteriorate the lo-
garithmic complexities of the standard balanced BST operations). This idea is mentioned
e.g. in [7]. The achieved time complexity is O(r log(rz)) =0(rlogr) and can be improved
to O(rlog min(rZ,L)). Interestingly, instead of using a balanced BST, we can make use of
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two binary heaps (one for values smaller than the median, one for values greater than or
equal the median), preserving the complexity but making the implementation simpler. This
idea seems to belong to programming folklore [9].

Now we show how a balanced BST may on a RAM machine be replaced with the van
Emde Boas (VEB) structure [4], with which keys from a universe U = {0, 1, ..., |[U| — 1} can
be searched for in time (this idea is not novel either, a similar one can be found at [10]).
Since |U] is L in our case, this translates to overall O(rlogloglL) time per pixel. We maintain
the VEB structure and additionally an array A[0, L — 1] of L counters. Assume that for
a given mask centered at pixel (i, j)) we know the median, its location ¢ in A and the cu-
mulative sums A[0,/—1] and A[¢+1,L—1] (note that the latter can be trivially calculated
as r2—A[0,0-1]-A[¢]). Now, if we proceed to the next mask, centered at (i + 1, j), for
2r + 1 added pixels we perform the same operations: one insertion into the vEB
(O(loglogL) time), one increment to A (O(1) time), maintaining ¢ and the cumulative sum
A[0,7-1] (O(1) time) and possibly finding the next /' to replace ¢, which requires the
successor or the predecessor query in the VEB (O(loglogL) time). Similar operations are
performed for the 2r + 1 pixels to remove from the mask. Overall, the median is calculated
in O(rlogloglL) time per pixel.

Interestingly, the O(r) factor may be decreased. The breakthrough achievement
belongs to Gil and Werman [7], who gave an O(logzr)-time algorithm, with no dependence
on L. Finally, Perreault and Hébert [13] presented an O(L)-time algorithm, where the lack of
dependence on r was achieved due to the incremental build of the mask in two directions:
both horizontally and vertically.

Recent years have witnessed a progress in practical implementations. Weiss [18] pre-
sented two algorithms, one working in O(logzr) time for “arbitrary-depth images”, but no
analysis with respect to L is given. Another algorithm is declared to need O(logr) time for
8-bit images, but again the L term is not taken into the complexity (and seemingly it is
O(logr + L) in the worst case). Still, also thanks to heuristics, his algorithm work much
faster than Photoshop’s median filters, especially for larger masks.

The implementation from the cited work of Perreault and Hébert [13] wins with Weiss’
algorithm if » exceeds about 40, i.e., for huge masks. They applied SIMD (SSE2 on x86
CPUs) instructions, multilevel histograms and other practical tricks. In comparison with
Photoshop their filter again wins easily, and its execution time remains fixed for growing ,
as predicted by its O(L) complexity.

3. Scalar median in O(logL = logzr/ loglog r) time

In this section we present an algorithm which achieves similar worst-case time to the
Gil and Werman one but uses different means, hence, we believe, may be quite interesting
from a theoretical point. Our algorithm, with O(logL = logzr/ loglogr) time, never dominates
over both Gil and Werman and Perreault and Hébert algorithms, but matches them for some
relation between L and r (discussion at the end of this section).
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Our algorithm makes use of range quantile queries, a well-known problem. This pro-
blem is often discussed in a restricted from, as range median queries, but some existing
algorithms can easily be generalized to replace, at query time, the median with any given
quantile. The very recently proposed solution by Gagie et al. [6] will serve our purpose.

The problem that Gagie et al. solve can be stated as following. Given a list (e.g., an
array) of numbers, preprocess it using possible little space (and preferably time), so as to
efficiently answer queries of the form: for a given range (e.g., the indexes of two endpoints
of a sublist) and a rank, return the number with that rank from the pointed sublist. The
solution in the cited work allows to search for items from integer alphabet of size ¢ in
O(logo) time, where the extra space cost (paid in the preprocessing) is nlog 6:x(1+0(1)) bits
and the preprocessing time is O(nlog o). The key underlying idea of their solution is to use
a binary wavelet tree [12].

We use the wavelet tree and the Gagie et al. search mechanism over the whole image,
many times (to save space, we can divide the image into areas of O(r) contiguous lines and
invoke our procedure separately on those image parts). Let r' = 2r + 1. We use a parameter
k = 2, whose value will be settled later. Let b, be the greatest power of k not exceeding 7'
(e.g.,if ' =73 and k = 4, then b, = 43 = 64). In the first (conceptual) pass over the image we
consider all stripes (horizontal bars) of the image with their height iby/k, for all 1 <i <k, and
their top line jby, for all j > 0 for which the stripe is fully contained in the image (here and
later, just for presentation clarity, we ignore the standard issue with the topmost and bottom
rows of the image). Note that there are ©(m/byxk) such stripes in total.

Now, let b = by/k. In the next pass over the image we consider all stripes with their
height ib,/k, for all 1 <i <k, and their top line jb;, for all j =0 for which the stripe is fully
contained in the image. There are ®(m/bxk) such stripes, which is (approximately) b,/by = k
times more than in the previous pass.

We continue in the same manner, until by, ;4 = 1. Note that last_indx = ©(log,m).

Consider now all the stripes obtained in all the passes. The pixels in each stripe are
ordered column-by-column taken from left to right, and in that order are (conceptually)
copied to an 1D array, one per stripe. Those arrays C,, , are identified by two indicators: the
number of image rows they cover v and the index u in the image of the top row they cover.
For each array we build a wavelet tree.

This is all that we do in the preprocessing stage. The wavelet tree build time is
O(nlogo) for a sequence of length n whose symbols are taken from an integer alphabet of
size 6. In our case, we note that each image pixel (except possibly the topmost and the
bottom rows, which, as mentioned above, we ignore in those considerations) belongs to at
most klog;m stripes, and the average number of stripes a pixel belongs to is (klog;m)/2. Our
alphabet size is L. From that we directly obtain that the overall preprocessing time is O(nmk
« loggm = logL).

Now, we need to notice (and this is the key observation of our algorithm) that each r'xr'
mask can be composed as the union of disjoint contiguous subsequences (ranges) from
O(log,r") = O(log,r) different arrays C. Thanks to the prepared wavelet trees and the Gagie
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et al. algorithm we can find e.g. the median of each selected range in O(logL) time but how
to find the median of the union of those ranges?

The solution to this problem can be found in the work by Frederickson and Johnson [5]
from 1980, where they show an algorithm for finding the median over K sorted arrays work-

ingin O (K + zilial logn; ), where n; are the array sizes. Note that in our scenario we do not
have physically sorted arrays, but the value with any given rank in a given array (i.e., selec-
ted range) can be returned in merely O(logL) time, thanks to the wavelet tree associated
with each array C. Hence the time complexity of the Frederickson and Johnson algorithm
can be multiplied by logL to use it for median finding over our data.

Now we calculate the time to find the median of the union of our ranges. We have
K = O(logyr), the array sizes (»; in the Frederickson and Johnson formula) are between r'
(mask width) and 7'b, i.e., logarithms of those sizes are always ©(logr). Remembering
about the logl multiplier, we obtain O(log,r = logr = logl) time complexity per pixel,
which implies O(nmlog,r = logr = logL) time for the whole image.

We have O(nmk = log,r = logL) preprocessing time and O(nmlog;r = logr = logl) ti-
me for the main phase of the algorithm; what is the optimal £? Obviously, we should set
k = logr, which gives O(nmlogr *(logr/loglogr)+*logL)=O(nm*logL >klogz r/loglogr)
total time in the worst case, or O(log L >x<1og2 r/loglogr) time per pixel, and it ends the
analysis.

Now, if we compare this result to the Gil and Werman one, which is 0(10g2r), we
conclude that our algorithm is better if logL = o(loglogr), and not worse if L = O(loglogr).
Unfortunately, in the former case the O(L)-time algorithm of Perreault and Hébert is
a clear winner. The case of logl. = ©(loglogr) needs a more careful consideration: if
L = @(log2+€r), for any constant € > 0, then our algorithm overcomes the Perreault and
Hébert one and matches the complexity of the algorithm of Gil and Werman.

4. Color median filtering

Although there exists no natural ordering of elements in a vector space, the notion of
a vector median may be logically introduced with regard to the definition of a scalar me-
dian. In formula (1), the differences between scalars may be replaced by distance between
vectors, according to a specified (usually Euclidean or city-block) metric. So now:

) N-1
R=min 3, d(Fi.F;)

where R is the median (filter’s output), N — the number of pixels in the window, and F,
i=0..N -1, pixels from W. Let also F, be the currently inspected pixel. This formula
constitute the vector median filter (VMF) by Astola et al. [1].
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Since that work there have been many ideas prompted to improve the image restoration
capabilities of median-like filters for color images. They include directional filters [17]
where the angle between vectors of color pixels is taken into account in order to eliminate
vectors “atypically” located in the vector (color) space, conditional substitutions of the cen-
tral pixel [16,8] and many others. A brief survey of existing algorithms can be found in [15].
We mention here yet a speed-oriented idea of mapping 3-dimensional vectors onto a single
dimension with space-filling curves [14]. Alas, the algorithm RVMF (reduced vector me-
dian filter) from the cited work achieved somewhat worse signal-to-noise ratio compared to
the original VMF.

5. Efficient implementation of VMF

The standard implementation of the color median filter requires O(r4) distance compu-
tations per pixel, which is enormously high for all but very small masks. We are not aware
of any speed-optimized implementations of those filters, hence we propose our own algo-
rithm for the classic VMF algorithm.

In the standard implementation many distances are computed several times, as the cor-
responding pixels fall within many different, yet spatially close, masks. The idea that we are
going to exploit is to cache some computations. What is cached are the sums of distances
from the current pixel (x, y) to all columns of the mask and also the total sum for the mask
and the pixel (x, ).

We remind that 7 is the radius of the mask, hence the square side length is 2r + 1. We
consider scanning the image with the mask separately for each horizontal line. When the
pixel (x, y) gets into the sliding mask for the first time during this scan, the sums of distances
between (x, y) and the columns [y — 2r, y] are calculated, and additionally the sum of those
2r + 1 sums is computed. The successive mask is shifted right by one pixel, and now from
the previous sum the sum of distances between (x, y) and the column y — 2r, which is
dropped from the mask, is subtracted, in constant time. Since one column has just been
removed, one column must also be added, this is the column y + 1, for which the sum of
distances is calculated and added to the total sum. This is continued until (x, y) falls outsi-
de the mask in the current horizontal scan. Note that with each shift of the mask there are
2r + 1 pixels that are covered by it for the first time and the described computations pertain
to all of them taken individually.

This procedure is applied separately for each line of the image. The number of distance
computations per pixel has been decreased to 0(r3).

6. Experimental results

The algorithms were implemented in C++, using MS Visual Studio 2008. The tests
were run on three workstations:
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— Athlon64 XP 3000+ (1.81 GHz) with 2 GB RAM,
— Intel Core2Duo E5400 (2 x 2.2 GHz) with 2 GB RAM,
— Intel Core2Quad E9400 (4 x 2.67 GHz) with 8 GB RAM.

The first two machines worked under 32-bit Windows XP, while the last one under
64-bit Windows XP.

The test on each machine consisted on filtering three pictures: Lena (512x512 pixels),
Baboon (256x256) and Frog (3456x2592). Each picture was filtered for masks of si-
zes: 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15 and 17x17. There was one exception — the
Athlon machine was too slow to finish tests on Frog in reasonable time. Test results, in
seconds, are given in Tables 1-6.

The first three tables compare the baseline (“naive”) implementation against ours
(“buffered”). All codes are single-threaded, i.e., make no use of many CPU cores. As it can
be seen, for the smallest mask, 3x3, there is no gain from the variant with “buffering”. In
one case (Athlon64, Frog image) there was even >10% speed loss.

Things change radically when large masks are used. Even for 5x5 we observe speedup
from about 1.6x for Frog to about 1.8x on the two other images. When the mask size goes to
13 x 13, the speedup raises to about 4.6-5.1x. Generally, the gains are slightly larger on the
Intel CPUs.

As expected, the fastest in those tests was the Core2Quad (C2Q) machine. When the
naive implementation was used, the processing speed of C2Q on the largest image, Frog,
reaches ~3.7 MB/s (1 pixel = 3 bytes) with the mask 3x3 and drops to mere 6.4 KB/s (!)
with the mask 17x17. In the proposed implementation, those speeds are 3.6 MB/s and
29.5 KB/s, respectively. We assume here that 1 KB = 10° bytes and 1 MB = 10° bytes. On
Lena, which is a much smaller image and, once read, can easily fit in the L2 cache of mo-
dern CPUs, those speeds were higher: 4.9 MB/s and 43.6 KB/s, respectively, for the pro-
posed implementation.

Table 1
Filtering time with different masks, test machine: Athlon64 3000+

. Mask size
Image | Filter
3 5 7 9 11 13 15 17
naive 11.55 61.55 | 221.66 | 587.53 | 1301.64 | 2576.85 - -
Frog 1 pugt.
ered 12.89 39.05 93.56 | 194.22 | 349.75| 539.31 - -
naive 0.08 0.45 1.66 4.11 9.016 16.92 29.75 47.45
Baboon
buffered 0.06 0.25 0.64 1.34 2.44 3.66 5.58 7.77
L naive 0.34 1.97 6.50 16.91 36.92 70.70 | 123.50 | 201.11
ena
buffered 0.28 1.05 2.66 5.45 9.91 15.27 22.80 32.52
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Table 2
Filtering time with different masks, test machine: Intel Core2Duo E5400
) Mask size
Image | Filter
3 5 7 9 11 13 15 17
E naive 7.30 41.52 154.20 | 415.73 | 907.12 | 1833.24 | 3963.05 | 5211.00
rog
buffered | 7.47 25.89 62.81 | 12550 | 221.45| 359.61| 545.09 [ 912.25
naive 0.06 0.33 1.06 2.83 6.11 11.72 | 2045 32.56
Baboon
buffered | 0.05 0.17 0.42 0.84 1.50 2.41 3.66 5.23
L naive 0.22 1.20 4.33 11.80 25.52 49.20 86.58 | 138.98
ena
buffered | 0.20 0.70 1.72 3.48 6.20 10.03 15.23 22.06
Table 3

Filtering time with different masks, test machine: Intel Core2Quad E9400

. Mask size
Image | Filter
3 5 7 9 11 13 15 17

E naive 5.81 33.88 126.41 | 337.52 | 747.45 | 1447.65 | 2552.21 | 4207.23

rog
buffered 5.61 19.95 50.61 | 101.92| 180.55| 293.11 | 446.53 | 648.34
naive 0.05 0.25 0.86 2.34 5.03 9.67 16.72 27.06

Baboon

buffered 0.05 0.14 0.34 0.69 1.22 1.98 2.98 4.28
L naive 0.16 0.98 3.53 9.63 20.97 40.59 70.83 | 116.20

ena
buffered 0.16 0.56 1.39 2.84 5.06 8.19 12.47 18.05

The results from the multi-thread implementation (Tabs. 4-6) are no surprise. The one-
core Athlon64 was practically indifferent to the number of run threads. The Core2Duo and
Core2Quad improve significantly their results up to 2 and 4 threads, respectively, which
corresponds to their number of cores. It was also noticed that when the number of threads
increased beyond those values, the speed occasionally grew too, by up to 5—6%. Using e.g.
4 threads at C2Q probably means one thread per core (no thread switching across the cores)
and then the total time is limited by the “slowest” core, i.e. the one that is hampered by other
light (system) tasks run in the background. This may be not the case when the number of
threads is greater and the cores that end their work faster are able to intercept some threads
previously assigned to the “slower” core. In other words, the workload may be more ba-

lanced across the cores when the number of threads is sufficiently large.
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Table 4
Filtering time with different masks and different number of threads,
test machine: Athlon64 3000+

Image | Threads Mask size
3 5 7 9 11 13 15 17
1 12.89 39.05 93.56 | 194.22 | 349.75 | 539.31 - -
Frog 2 12.86 39.03 92.86 | 196.14 | 336.81 | 549.31 - -
3 12.84 39.02 92.83 | 196.78 | 335.52 | 541.22 - -
4 12.83 38.97 92.74 | 197.22 | 335.53 | 539.23 - -
1 0.06 0.25 0.64 1.34 2.44 3.66 5.58 7.77
Baboon 2 0.06 0.27 0.64 1.36 2.36 3.70 5.58 7.89
3 0.08 0.27 0.63 1.36 2.33 3.67 5.53 7.94
4 0.08 0.25 0.63 1.39 2.33 3.66 5.52 7.78
1 0.28 1.05 2.66 5.44 9.91 15.27 22.80 32.52
Lena 2 0.27 1.03 2.64 5.50 9.53 15.45 23.16 32.94
3 0.27 1.03 2.59 5.50 9.50 15.31 22.92 32.63
4 0.27 1.00 2.58 5.52 9.52 15.28 22.89 32.56

Table 5
Filtering time with different masks and different number of threads, test machine:
Intel Core2Duo E5400

Image | Threads Mask size
3 5 7 9 11 13 15 17

1 7.469| 25.891 | 62.812| 125.498 | 221.451 | 359.605 | 545.086 | 912.245

2 4.641 | 13.578 | 32.359| 64.171|112.904 | 188.795 | 279.356 | 404.948

3 4593 | 13.547| 32.156| 64.249|112.874 | 186.982 | 277.606 | 405.339

Frog 4 4.672| 13.515 32| 64.062 | 112.358 | 182.638 | 276.606 | 402.104
5 4.594 | 13.563| 32.468 63.89| 112.42183.403 | 277.997 | 409.948

6 4.609 | 13.531| 32.063| 63.718 | 112.421 | 182.373 | 275.778 | 401.635

8 4.515| 13.453| 32.046| 63.561| 111.905 | 182.326 276.2 | 401.307

1 0.047 0.172 0.422 0.844 1.5 2.406 3.656 5.234

2 0.047 0.109 0.219 0.454 0.797 1.297 1.953 2.859

3 0.047 0.125 0.235 0.484 0.812 1.297 2.031 2.828

Baboon 4 0.047 0.094 0.25 0.453 0.797 1.281 1.891 2.703
5 0.047 0.125 0.266 0.5 0.781 1.235 1.86 2.688

6 0.032 0.109 0.234 0.453 0.781 1.234 1.859 2.657

8 0.047 0.109 0.234 0.485 0.766 1.25 1.874 2.656

1 0.204 0.703 1.718 3.484 6.203 | 10.031| 15.234| 22.062

2 0.109 0.39 0.906 1.828 3.204 5.296 8.031| 11.562

3 0.078 0.407 0.907 1.782 3.281 5.125 7.922 | 11.484

Lena 4 0.125 0.375 0.906 1.781 3.187 5.172 7.781| 11.219
5 0.141 0.406 0.922 1.781 3.156 5.14 7.875| 11.187

6 0.125 0.391 0.89 1.797 3.156 5.172 7.844 | 11.219

8 0.125 0.36 0.906 1.797 3.187 5.078 7.782 | 11.171
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Table 6
Filtering time with different masks and different number of threads, test machine:
Intel Core2Quad E9400

Image | Threads Mask size
3 5 7 9 11 13 15 17
1 5.61| 19.953| 50.609 | 101.921 | 180.547 | 293.11 | 446.531 | 648.344
2 3.203 | 10.468 | 25.859| 51.485| 90.969 | 147.594 | 224.875 | 326.282
3 2.359 7.25| 17.359| 34.468| 60.719 98.5 | 150.156 | 218.172
Frog 4 2| 5782 13219 25.968 45.75| 74.188 | 116.094 | 163.547
5 2.204 6.64 | 15.719| 30.875| 54.672| 88.156| 133.594 | 195.781
6 1.985 5.672 | 13.235| 25.953| 45.688 | 81.172 | 122.719| 163.562
8 2| 5.672| 13.203| 27.922| 45.735| 73.828 | 113.906 | 163.453
12 1.984 5.782| 13.093| 25.906| 45.594| 73.812|113.219| 162.657
1 0.047 0.141 0.344 0.687 1.219 1.984 2.984 4.281
2 0.031 0.093 0.188 0.375 0.656 1.062 1.609 2.313
3 0.031 0.063 0.141 0.266 0.453 0.703 1.078 1.546
Baboon 4 0.031 0.047 0.11 0.203 0.343 0.547 0.829 1.172
5 0.032 0.062 0.125 0.234 0.406 0.641 0.969 1.375
6 0.032 0.062 0.109 0.203 0.375 0.531 0.843 1.172
8 0.031 0.047 0.109 0.203 0.343 0.531 0.781 1.125
12 0.031 0.047 0.109 0.204 0.328 0.516 0.781 1.094
1 0.156 0.562 1.391 2.843 5.062 8.187| 12.469| 18.047
2 0.11 0.297 0.734 1.469 2.61 4.219 6.468 9.344
3 0.078 0.203 0.5 0.985 1.734 2.813 4.281 6.219
Lena 4 0.063 0.156 0.375 0.75 1.312 2.125 3.235 4.703
5 0.063 0.172 0.438 0.891 1.563 2.531 3.859 5.594
6 0.079 0.172 0.375 0.75 1.312 2.125 3.265 4.672
8 0.062 0.157 0.375 0.75 1.312 2.094 3.203 4.594
12 0.062 0.172 0.391 0.735 1.282 2.078 3.157 4.531

7. Conclusions

We discussed the classic 2D median filter, both for scalar data (grayscale images) and
vector ones (color images). We review existing worst-case optimized algorithms for scalar
median filtering and presented our algorithm along these lines, which matches the best re-
sults for some relation of the mask radius r and the number of intensity levels L. As our
tools were rather different than in known algorithms, we think this achievement has some
value in theory.
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Later, we presented a simple idea to speed up the classic vector median filter, VMF.
Surprisingly, it seems that little effort has been made for speed-optimized color median fil-
ters, which it should be of utmost importance as they are significantly slower than their
scalar counterparts. We focus on the original idea only [1] and reduced O(r4) distance com-
putations per mask in the naive version to O(r3). Experiments show that for the mask of size
13x13 this version is about five times faster than the naive one (and of course the speedup
grows for even larger masks). We also demonstrated that median filters are easily scalable
across many CPU cores (tests included a 2-core and a 4-core machine).

Future work should focus on analysis of other median-like filters from the implementa-
tion point. Also we believe other speedup ideas for VMF are possible and we are going to
explore them soon.
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