Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Electrochemical hydrogen pumps and membranes
Języki publikacji
Abstrakty
W pracy dokonano krótkiego przeglądu metod oczyszczania wodoru, ze szczególnym uwzględnieniem elektrochemicznych pomp i separatorów wodoru. Podano zasadę ich działania, sformułowano podstawowe kryteria służące doborowi stosownych materiałów do ich konstrukcji. W części doświadczalnej przedstawiono wyniki badań wybranych właściwości proszków i spieków ceranu baru domieszkowanego itrem oraz o niestechiometrii w podsieci kationowej. Porównano strukturę, mikrostrukturę i odporność chemiczną na działanie CO2 materiałów otrzymanych dwiema metodami: metodą standardową z wykorzystaniem stałych substratów oraz metodą "sol-gel" (tzw. metoda Pechiniego). Przedstawiono także przykładowy wynik wyznaczania charakterystyki pompowania wodoru, wskazujący na możliwość praktycznego zastosowania wysokotemperaturowych przewodników protonowych do konstrukcji pomp lub membran do separacji wodoru.
In this work different methods of hydrogen purification were presented and discussed. Special emphasis was given to electrochemical hydrogen pumps and membranes. The general principle of operation of such devices was presented, the basic criteria for materials selection were formulated. The experimental part shows the results of structural, microstructural and chemical stability against CO2 investigations done on BaCeO3 samples modified by yttrium dopant or by the change of Ba/Ce cationic ratio. Two methods were used for the powders preparation: standard procedure, where solid-state reagents were used and "sol-gel" wet method (Pechini process). The example results, concerning the pumping efficiency, were also presented, demonstrating the possibility of application of high-temperature protonic conductors for the construction of pump or membrane for hydrogen purification.
Wydawca
Czasopismo
Rocznik
Tom
Strony
159--172
Opis fizyczny
Bibliogr. 51 poz., rys., wykr., tab.
Twórcy
autor
autor
- Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, ppasierb@agh.edu.pl
Bibliografia
- [1] Winter C.J., "Into the hydrogen energy economy-milestones": Intern. J. Hydrogen Energy, 30, (2005), 681-685.
- [2] Chow J.C., Watson J.G., Herzog A., Benson S.M., Hidy G.M., Gunter W.D., Penkala S.J., White CM.: J. Air Waste Manage. Assoc, 53, (2003), 1172.
- [3] White CM., Stazisar B.R., Granite E.J., Hoffman J.S., Pennline H.W.: J. Air Waste Manage. Assoc, 53, (2003), 645.
- [4] Bolland O., Undrum H.: Adv. Environ. Res., 7, (2003), 901- 911.
- [5] Benson S.: "Ceramics for advanced power generation", IEA Clean Coal Centre Reference, CCC/37, ISBN: 92-9029-349-7, (2000), 64.
- [6] Sircar S.: Golden T.C., Sep. Sci. Technol., 35, (2000), 667.
- [7] Adhikari S., Fernando S.: Ind. Eng. Chem. Res., 45, (2006), 875.
- [8] Collot A.G.: "Prospects for hydrogen from coal", IEA Clean Coal Centre Reference, CCC/78, ISBN 92-9029-393-4,(2003), 76.
- [9] Phair J.W., Donelson R., "Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation", Ind. Eng. Chem. Res., 45, (2006), 5657-5674.
- [10] Iwahara H.: „Hydrogen pumps using proton-conducting ceramics and their applications", Solid State lonics, 125, (1999), 271-278.
- [11] Bąk T, Nowotny J., Rękas M., Sorrell CC: "Surface potential of yttria-stabilized zirconia at elevated temperatures", Buli. Polon. Sci. Chem., 49, (2001), 75.
- [12] Tao S.W., lrvine J.T.S.: Solid State lonics, 154, (2002), 659-667.
- [13] U.S. Department of Energy, Small Business lnnovation Research Program and Smali Business Technology Transfer Program, FY 2005 Solicitations, Technical Topic Descriptions Office of Fossil Energy, 15. Materials Research http:///www. science.doe.goV/sbir/solicitations/fy%202005/15_Fe3.htm.
- [14] U.S. Department of Energy, Hydrogen from Coal Program, Office of Fossil Energy, U.S. Department of Energy, Washington District Columbia. Jun 10, 2005.
- [15] Song S.J., Wachsman E.D.J., Rhodes S.E., Dorris U., Balachandran U.: "Hydrogen permeability of SrCe(1-X)MxO(3-b) (x=0.05, M=Eu, Sm)", Solid State lonics, 167, (2004), 99-105.
- [16] Linkov V.: Membr. Technol., 2001, (2001), 4-8.
- [17] Zhu B., Mellander B.E.: Solid State lonics, 77, (1995), 244-249.
- [18] Iwahara H.: Solid State lonics, 86-89, (1999), 9-15.
- [19] Hamakawa S., Li L, Li A., Iglesia E., "Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3-a", Solid State lonics, 48, (2002), 71-81.
- [20] Kosacki I., Anderson H.U.: Solid State lonics, 97, (1997), 429-436.
- [21] Teraoka Y, Fukuda T, Miura N., Yamazoe N.: "Nippon Seramijkkusu Kyoaki Gakujutsu Ronbunshi", J. Ceram. Soc. Japan, 97, (1989), 533-538.
- [22] Miura N., Okamoto Y, Tamaki J., Morinaga K., Yamazoe N.: Solid State lonics, 79, (1995), 195-200.
- [23] Eschenbaum J., Rosenberger J., Hempelmann R., Nagengast D., WeidingerA.: Solid State lonics, 77, (1995), 222-225.
- [24] Pal U.B., Singhal S.C.: J. Electrochem. Soc, 137, (1990), 2937-2941.
- [25] Pal U.B.: Solid State lonics, 52, (1992), 227-233.
- [26] Verveij H.: J. Mater. Sci., 38, (2003) ,4677-4695.
- [27] Xia C.R., Liu M.L.: J. Am. Ceram. Soc, 84, (2001), 1903-1905.
- [28] Song S.J., Lee T.H., Wachsman E.D., Chen L., Dorris S.E., Balachandran U.: "Defect structure and transport properties of Ni-SrCeO3-b cermet for hydrogen separation membranes", J. Electrochem. Soc, 152, (2005), J125-J129.
- [29] Kreuer K.D.: Solid State lonics, 97, (1997) ,1-15.
- [30] Savaniu CD., Canales-Vazques J., lrvine J.T.S.: J. Mater. Chem., 15, (2005), 598-604.
- [31] Schwartz M., Berland B.S., Gade S.K., Schaller R.W.: Abstr Pap. Am. Chem. Soc, 225, (2003), U864.
- [32] Simner S.P., Stevenson J.W.: J. Power Sources, 102, (2001), 310-316.
- [33] Weil K.S., Hardy J.S., Rice J.P., Kim J.Y. : Fuel, 85, (2006), 156-162.
- [34] Phair J.W., Badwal S.P.S.: "Review of proton conductors for hydrogen separation", lonics, 12, (2006), 103-115.
- [35] Lee W., NowickA.S., Boaturmer L.A.: Solid State lonics, 18/19, (1986), 989.
- [36] Iwahara H., Esaka T, Uchida H., Yamauchi Y, Ogaki K.: Solid State lonics, 18/19, (1986), 1003.
- [37] Kroger F.A., Vink H.J.: in Solid State Physics, (Seitz F. i Turnbull D., Red.), v.3, Academic Press, New York, (1956), 307.
- [38] Takeuchi K., Loong C.-K., Richardson J.W. Jr., Guan J., Dorris S.E., Balachandran U.: „The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concen-tration and hydrogen doping", Solid State lonics, 138, (2000), 63-77.
- [39] Guan J., Dorris S.E., Balachandran U., Liu M.: "Transport properties of BaCe095Y0.0503-a mixed conductors for hydrogen separation", Solid State lonics ,100, (1997), 45-52.
- [40] Guan J., Dorris S.E., Balachandran U., Liu M.: "Transport properties of SrCe095Y0.0503-a and its application for hydrogen separation", Solid State lonics, 110, (1998), 303-310.
- [41] Haile S.M., Staneff G., Ryu K.H.: J. Mater, Sci., 36, (2001), 1149-1160.
- [42] Liang K.C., Du Y, Nowick A.S.: Solid State lonics, 69, (1994), 117-120.
- [43] Nowick A.S., Du Y, Liang K.C.: Solid State lonics, 125, (1999), 303-311.
- [44] Park H.B., Huh H., Kim S.J.: Bull. Korean Chem. Soc, 13, (1992), 122-127.
- [45] Qi X., Lin Y.S.: "Electrical conduction and hydrogen permeation through mixed -proton-electron conducting strontium cerate membranes", Solid State lonics, 130, (2000), 149-156.
- [46] Hamakawa S., Li L., Li A., Iglesia E.: "Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.0503-a", Solid State lonics, 48, (2002), 71-81.
- [47] Song S.J., Wachsman E.D., Rhodes J., Dorris S.E., Balachandran U.: "Hydrogen permeability of SrCe^MĄs (x=0.05, M=Eu, Sm)", Solid State lonics, 167, (2004), 99-105.
- [48] Song S.J., Lee T.H., Wachsman E.D., Chen L, Dorris S.E., Balachandran U.: "Defect structure and transport properties of Ni-SrCeO3-b cermet for hydrogen separation membranes", J. Electrochem. Soc, 152, (2005), J125-J129.
- [49] Pechini M.P.: "Combustion of metal-organic precursors", US Patent3330697(1967); WallerD., LaneJ.A., KilnerJ.A., Steele B.C.H.: Mater. Lett., 27, (1996), 225.
- [50] Pasierb P, Gajerski R., Rokita M., Rekas M.: "Studies on the binary system Li2CO3-BaCO3", Physica B, 304, (2001) 463-476.
- [51] Pasierb P, Komornicki S., Koziński S., Gajerski R., Rękas M.: "Long-term stability of potentiometric CO2 sensors based on Nasicon as a solid electrolyte", Sensors and Actuators B, 101, (2004), 47-56.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH1-0021-0031