AUTOMATYKA ¢ 2008 « Tom 12 Zeszyt 2

Leszek Kotulski*

Parallel Allocation of the Distributed Software
Using Node Label Controlled Graph Grammars

1. Introduction

The notion of concurrent or distributed systems has a different meaning when it is
referred by the different people. Further confusion arises when we face a large variety of
multiprocessor and network architectures. In the paper, we will consider distributed com-
puting as a paradigm that allows objects to be distributed over a heterogeneous network. An
object can be specified by a set of offered services (via methods provided by an object) and
a set of services requested from other objects. A communication between these objects is
supported by many standards such as CORBA [20], DCOM [18], ANSA [1] and allows one
to create communication channels between the components, even created by different pro-
gramming teams. Having a compre-hensive infrastructure on hand, we can concentrate on
flexibility evolving architectures and dynamic distri-buted object creation. UML [21] sim-
plifies distributed system description by introducing use case model and diagrammatic tools
for the visualization of specified parts of a system. Graph transformations are increasingly
popular as a meta-language to specify and implement visual techniques based on the UML
[22, 23]. The algebraic approach (based on the graph morphism) [4] can be used to intro-
duce visual languages definition [3], model concurrency [2] and to specify the distributed
system semantics [9].

The paper focuses on constructions a system that support an allocation of parallel
object-oriented applications onto a target hardware architecture. The aim of the paper is an
introduction: the formal description of such a system and the way of its dynamic transfor-
mation. The use for this purpose of graph transformation is not new but the presented for-
malism is the one that meets the following assumptions:

— it is enough expressive to solve a problem of allocation control,
— it is sufficiently effective (i.e. its solves membership, parsing and derivation problem
with polynomial time complexity),

* Institute of Automatics, AGH University of Science and Technology, Krakow

321

322 Leszek Kotulski

— it offers the ability of online reaction on the external events (generated by the described
system environment),

— it supports distribution of graph describing the system and its transformation in a paral-
lel way.

The inspiration of this work was one of NLC graph of grammars (ETPL(k) [8]), that
solves membership and parsing problems with O(nz) computational complexity. In sec-
tion 2, we introduce aedNLC graph grammar (equivalent to ETPL(1)) that is able to de-
scribe both software and hardware structure of the specified system. The reaction of the
graph transformation system on the external request generated by the environment of the
specified system is (in section 3) by a finite state automata called Derivation Control Dia-
gram. Finally the way of distribution of the allocation graph and the way of its parallel
transformation is presented (in section 4). Section 5 outlines the related works and future
directions of our research .

2. An indexed edge-unambiguous graph
as a tool for the distributed system description

In [15], it was shown that the attributed graph is an intuitive and enough powerful
mechanism for describing the current allocation state of a distributed system. The attributed
and edge-labeled directed Node Label Controlled (aedNLC) graph grammar can also main-
tain a set of local graphs and coordinate their parallel modification in such a way that they
describe a (distributed) state of the allocated system. Before introducing a parallel deriva-
tion model, some basic assumptions of the centralized allocation system should be re-
viewed.

The interpretation of the system model is as follows: each component of the distributed
system is represented by one of the graph’s nodes? . Node labels describe the types of those
components (“N” — computing nodes and “M” — object instances representing both process-
es and synchronizing them monitors); additionally, there are introduced nodes labelled by
“E” and “I” defining the offered and required services.

The relations between individual components are defined by means of directed edges
connecting the appropriate graph nodes. The edge label designates a type of relation be-
tween system components. We make use of the directed graph since we assume that these
relations may be asymmetric. If a more detailed definition of nodes or edges is required, an
adequate attribute set may be ascribed to the labels. Attributed labels keep both a structural
information (basic label) and some private information associated with the given compo-
nent (attributes). Attributes inside label are represented by a partial function from a set

D" The term “node” used in this paper is equivalent to the “graph node”, while “computing node”
always refers to as a computer.

Parallel Allocation of the Distributed Software... 323

of attribute names to a set of attribute values. For attributed node labels (and appropriately
for attributed edge labels), we can introduce the equivalence relation (U,HO(v,fleu=v,
where [,v are basic labels, and f is an attributing function. To simplify the notation, an
underlined basic label W (i.e. W) represents any attributed label belonging to [(u,f)]¢ equiva-
lence class. Function lab(u) returns basic label p. Let Z, " be accordingly a set of attributed
node labels and a set of edge labels, then the graph is defined as follows:

Definition 2.1

An attributed directed node- and edge-labelled graph, EDG graph, over £ and T is
a quintuple H=(V, D, £, T, 3), where
V — is the finite, non-empty set of graph nodes, to which unique indices are
ascribed. The order in the indices set defines the order within V.
D — is the set of edges of the form (v, W, w) where w,ve Vand ne T.
X — is the set of attributed node labels.
I' — is the set of attributed edge labels.
&: VT — is the node labeling function. B

For a given graph H, its components will be denoted as Vi , Dy, 8y respectively.

In order to achieve polynomial complexity of graph parsing a graph nodes have to be
indexed in an unambiguous manner and it is necessary to introduce some limitation on
EDG-graph structure [6, 8]. The strongest of these limitations is the rule, which accepts
only edges leading from a node with a smaller index to a node with a greater one, because
there is no relationship between the order of component allocation and the direction of the
edges; on the contrary: edge direction depends on the labels of nodes, which are connected
by them. To solve the above conflict, for each label x, we introduce an opposite label —x
with the following interpretation: for any nodes v, W and an attributing function f, the edge
(v,(x,f),w) is equal semantically to the edge (w,(-x,f),v).

We introduce the following notation conventions: a label with double negation is iden-
tified with original label (i.e. -(-X) is equivalent to X), for the attributed label , -p denotes
the label (-u,f). Graph grammars can control the correctness of the such graphs derivation
(called next IE-graphs). Let & denotes a set of logic formulas using attributes and labels of
nodes from the IE-graph G, and fineset(A) denotes set of finite subsets of A. We say that
the formula e § is satisfied in a context of the graph G if 7 can be evaluated as true after
ascribing of attributes belonging to graph G.

Definition 2.2

Triple P = (L, R, C), where:

L =(V., Dy, %, T, §) is an IE-graph called left-hand side of production, with pointed
node vy ,

R =(Vg, Dy, Z, T, 8R) is an IE-graph called right-hand side of production,

C: ELx{in, out}xV}xfinset(NLx(NLxE)XELx{in,out}) is an embedding transforma-
tion
is said to be a production applied to the node v of the IE-graph G.H

324 Leszek Kotulski

For any IE-graph G and any node v we can apply production P if there exists the ho-
momorphism h:L—K, where K is a subgraph of G, such that h(v)) = v and Vw € V.
d(W)) = (8(h(w))) and Yu e K3z € L: h(z) = u.

Graph K is replaced by graph R according to the embedding transformation, which
defines how edges connecting graph K with the rest of graph G should be replaced by edges
coming from and to graph R. A new edge is generated only if formula & € & is satisfied in
a context of the graph G. All the formulas introduced in the paper use only attributes of the
node v and nodes which are directly connected with it (called a direct environment of
v (DENV(V))), so they can be evaluated in finite number of steps.

For production P = (L, R, C), equivalence C((y, in, v) = {(Q,(X,T),l,in)}means

Notation: Informal interpretation: Formally:

C((y, in, v))={ Every edge A labeled by “y” and coming
into node h(v) in graph G(v) (v and h(v)

(oo) have the same labeling) ought to be Every edge (p,A,N(v))€ Dg

replaced by the edge connecting the node such that lab(A)=Y A pe Vg-Vk

w of the graph of the righ—hand side of the .

production and labeled by “Q” with the 15 ;ep}:aced by the edge (p.u,W)
Q, ..) node p of the rest graph and labeled by such that
QX)) “X” on condition that formula r is fulfilled we Vg: d(w)=Q

for the nodes belonging to this edge).
(for the nodes belonging to this edge) (3(p)=X) and 7 is fulfiled

New edge ought to be labeled by “u” and
(Q, (X, m),lt,..) is coming into node w.

(Q, (X, m),u, in) }

New graph H=(V,Dy,2.I,0y) created by applying the production P=(L, R, C), with
homomorphism h in the node v of the G=(V,Dg,%,I,0) graph is defined as follows:

Vi = (Vg - h(VD) U Vg,
Dy = (Dg - { (p.u.W)eDg: weh(Vy) v peh(Vy)}) L Dy

U {(p,u,w): FyeT,Aqe h(Vy),3de {in,out} (Q,(X,m),w in)e C(y,d,q) A
n(p,G)=true A 3(p)=X A we Vg d(W)=Q)}

U {(w,u,p): Fyel,3qeh(Vy),3de {in,out} (Q.(X,m).1,0ut)e C(y,d,q) A
n(p,G)=true A §(p)=X A we Vg: §(W)=Q)},

Oy = (8 - { ((v), 3(h(V))): veh(V)}) L Bg.

Homomorphism ought to be unambiguously defined, so in the paper we assume that if
a graph of the left-hand-side of the considered production consists of a single node vy only,
then the homomorphism h is defined as unique homomorphism from the node v; to the
node v (for which production is applied).

Parallel Allocation of the Distributed Software... 325

Definition 2.3
A context dependent graph grammar is a quintuple ¥ = (X, A, T, P, Z), where:
X — is the finite, nonempty set of node labels,
AcCX — is the set of terminal node labels,
' — is the finite, nonempty set of edge labels,
Z - is the initial IE-graph,
P — is the finite set of productions (of the form defined in def. 2.2).1

3. Derivation control

We use programmable attributed and edge-labelled directed Node Label Controlled
(aedNLC) graph grammars for controlling correctness of the allocation graph modifica-
tions. ETPL(k) graph grammar [6, 7], being a well-known subclass of grammars defined by
the Rozenberg [5, 10], solves the membership problem in a very efficient way (O(nz)). Such
a grammar is necessary to answer a question if an IE-graph can be generated by its produc-
tions, for example while the composite distributed objects (called groups [12] are created.
However, it does not solve our basic problem “when and how the allocation graph is trans-
formed into another one?”. Consequently, aedNLC graph grammar is a combination of the
context dependent graph grammar and the Derivation Control Diagram (see def. 3.1).

In practice, the allocation state will change when a user of the distributed system de-
cides to create a new componentz) ; this decision we will call an allocation request and for-
mally such a request will be described by the function

RQ: RQ_name — (RQ_art_name — RQ_val)
where:
RQ_name - is the set of allocation request names,
RQ_atr_name - is the set of all attribute names that appear in requests,
RQ_val — is the set of all possible parameter values.

Let RS denotes the set of all possible requests, so any finite subset of RS will be called
a requests set. With every user request there will be associated some graph grammar
productions (see def. 2.2), that force a derivation of graph H to graph G. The order of user
request service and used production will be designated by the derivation control dia-
gram (see def. 3.1).

We assume that users of the distributed system will enrich the requests set, on the
other side it will be decreased during interpretation of the derivation control diagram.
Both these actions can be made in parallel.

By analogy, function ERQ, called an external request, will represent some action of an
operating system. Let ERS denote the set of all possible external requests, so any finite
subset of ERS will be called an external request set?.

2 It can be also made indirectly by a program requested dynamics allocation of some components.
9 We will not define them in the paper because they are strongly dependent on the operating system
supporting computing node.

326 Leszek Kotulski

Definition 3.1

A derivation control diagram is a sixtuple S = (N, I, F, T, I, Wait), where:

N —is the set of control points,
IcN and F < N are the set of starting control points and the set of final control points
respectively,
T is a set of transitions of the form (k,q,P,SF), where:
k,qe N are control points (transition occurs between k and q),
P is either a production or & symbol when no production is associated with this
transition,
SF is a semantic action described with the help of three functions:
eval: RS—R, which modifies attributes of the graph R (being right-hand
side graph of the production P) using as the parameters the request attributes.
p": finset(RS)—finset(RS), which reduces the request set,
p*: finset(ERS)—finset(ERS), which enriches the external request set;
[T={I1,, ke N} where I1,: IEpgneT><finset(RS) — T is a selector that for the graph G
(generated by ¥ graph grammar) and the set of requests ® chooses transition of the
form (k,q,P,SF),
Wait={ Wait,, ke N}, where Wait,: IEpgner<finset(RS) — {true,false} is a synchro-
nizing function which for the graph G (generated by ¥ graph grammar) and the set of
requests o returns true if it is possible to make the transition or false when graph
transformation should be delayed until either J or ® will change, so that Wait, returns
true. |

Starting control points (kel) are always active. When synchronizing function Wait,,
inside an active control point returns true then the transition is fired. If all of these eva-
luations fail (i.e. return false) the next evaluation process delays until some new request
appears (0’=0U{r})).

The semantics function SF (associated with this transition):

— enriches external request set (requesting some actions of an operating system),
— removes from w the request, that is serviced ,
— evaluates parameters of the right-hand graph of the production P.

Production P is applied to the current graph G and the new graph H is created (see
def. 3.4). When the activity is moved to the next control point, that is neither a starting nor
a final control point, the next thread of control is created, so it is possible to concurrently
evaluate the next synchronizing function associated with the starting point. When activity is
moved to a final point its thread is deleted. More intuitively, a derivation control diagram
can be interpreted as a graph connecting the control points (see Fig. 1) inside of which there
are evaluated sequentially both the synchronizing function and the selector choosing one
of the transitions from one control point to another one (drawn as an edge). During such

Parallel Allocation of the Distributed Software... 327

a transition the production P; is applied and the semantic action SF; is executed. A graph
build of the node v, nodes of the derivation control diagram which are directly connected
with v and the edges connecting these nodes, is reffered to as a direct environment of
v (DENV(v)).

Fig. 1. Derivation graph

Definition 3.2

We say that a derivation control diagram is effectively computable if each selector IT,
and each synchronizing function Wait, are evaluated:

1. using parameters at most one request U,

2. using at most attributes and graph properties direct environment of the node v in graph
G, pointed by the attribute dest node of the request u (i.e. (RQ(uU))(dest_node)=v),

3. every left-hand side graph of the production is the direct environment of the node v, .1l

Definition 3.3

A pair (¥,S), where:

Y=(Z, AT, P, Z) is a context dependent graph grammar,

S = (N,LET,ILW) is an effectively computable derivation control diagram

is called an attribute and edge-labelled directed Node Label Controlled graph
grammar (shortly an aedNLC graph grammar).®

Definition 3.4
Graph H = (V,Dyp,Z,T,0y) is called directly deriverable from a graph G by applying
a production P in a node v with attributes given in a request u, when there exists a control
point k, such that:
a) Wait,(DENV(G,v),{u})=true,
b) nk(DENV(G’V)ﬁ{u}):(k7q7P,SF),
c) semantic action SF evaluates attributes of the graph R (ie. R=eval(u)), being right-
hand side graph of the production P,
d) a graph H is a result of applying the production P to the node v of the graph G. B

We denote such a situation as H=Direct_derivation(P,v,u)(G).

328 Leszek Kotulski

Definition 3.5

Derivation control state in a context dependent graph grammar ¥ with a derivation
diagram S is the quadruple C = (G, k, U, Y), where:
G - is an indexed edge-unambiguous graph (IE-graph from def. 2.3),
k — is an active control point of the derivation diagram S,
U - is a set of user requests (Uefinset(RS)),
Y - is a set of external requests (Ye finset(ERS)).H

A modification of a derivation control state in a context dependent graph grammar ¥
with a derivation S = (N,LET{Il},,{Wait,},) is described by the operation
TRANSITION((G,k,U,Y)) defined by the algorithm presented on Figure 2 and concurrent-
ly executed operations add_RQ(U) (adds new user requests to U) and execute_ ERQ(Y)
(executes a request from Y and reduces it).

begin

while not 3 ueU: v=(RQ(u))(dest_node)e Vg and Waity(DENV(G,v),{u})= true do end,;
U'=p(U); -—-usually U’ =U - {u};
if I DENV(G,v),{u})=(k,q,P.SF) e T then

Y =p’(Y);
G’ = Direct_derivation(P, v, u)(G);
TRANSITION((G’,q,U",Y"));

else ERROR(“a selector evaluation fails”);

end.

Fig. 2. TRANSITION algorithm

The “while” loop in the operation TRANSITION is a busy form of waiting4) until
a new user request appears in U (added by add_RQ operation), for which synchronizing
function Wait equals to true.

Definition 3.6

A derivation process in an aedNLC graph grammar (¥,S) is a maximal (in a sense
of a length) sequence of pairs derivation control states S and transitions:

(CO’tO)(C17t1) (Ci7ti) (Cn,tn), where

for C; = (G, n;, U;, Y)), t; =(n;, q;, P;, (evaly,p;,p’y)), Gop="Y.Z for ny=0; for each i there exists
u;e U;, such that the atribute dest_node points the node v; , which fulfils the following prop-
erties:

* In a real environment it should be substituted by some synchronizing construction.

Parallel Allocation of the Distributed Software... 329

1) Waitny(DENV(G,,v)),{u;})= true

2) HnyDENV(G;,v)),{(u;})=t;

3) ¢ =kis1s Pi(UpD=Uiy1 » P'i(YD)=Yis1,

4) G;,,= Direct_derivation (P;, v, u;)(G;).m

The definitions introduced above represent the world of sequential computations, the
formalism of an aedNLC graph grammar allows one to introduce some parallelism into
a derivation of an allocation state. The basic idea is to split an allocation graph into separate-
ly maintained subgraphs and to synchronize their derivations by using requests. The mo-
dules responsible for a local derivation, will be called allocators, and represented by theno-
des indexed with O inside each of local graphs. An example of such a solution will be
presented in the next chapter.

Definition 3.7

A parallel derivation control state in a context dependent graph grammar ¥ with
a derivation diagram S is a set of states C; to C,, such that:

1) C; =(G;, k;, U;, Y,) is the derivation control state (see def. 3.5), where G; is an IE graph.

2) there exists a communication protocol, which guarantees, that for any i, j a request
generated by the allocator controlling subgraph G;, will be served in a finite time by the
allocator controlling subgraph G;.®

Definition 3.8

A parallel derivation process ina aedNLC graph grammar (¥,S) is a maximal
(in a sense of a length) sequence of the parallel derivation control states S and transitions of
the form: (Co,tp)(Cyty)-.....(Cipt)-evvvnnnnee (C,t,), where each j-th derivation control state
and each j-th transition are of the form C=(Cj;,...,C;) and t;=(t; ;,....tj ,,), and for each
I=p=m (Cy .t p)---(Cj pstip)--+-(Cppstn p) is @ derivation process (see Definition 3.6).H

4. Distributed derivation of the allocation graph

In [15] there was considered an example of a sequential derivation of the allocation
graph. The minimal set of basic node labels which enables one to illustrate the connections
among the distributed software application components and the hardware computing nodes
may be reduced to four classes of attributed node labels:

— representing a computing node in a local computer network;

— representing an object instance which encapsulates some data structure, offers
some services and requests some tasks from other object instances (a Moni-
tor-like structure);

representing an entry gateway to one of the services offered by an object;

— representing a stub module, which is a local interface to a remote service.

£ 1z

— et
|

330 Leszek Kotulski

The relations among the system components can be defined by five classes of attri-
buted edge labels:

representing a relation “is allocated in”, (for all edges connecting any node
representing object instance with the node representing the computing node, in
which this object is allocated);

b — representing a relation “belongs to” (for all edges connecting any node repre-
senting entry unit with the node representing their object instance);

representing a relation “potential calls”” (for all edges connecting any node
representing object instance with the node representing stub supporting the re-
quested services);

representing a relation “links with” (for all edges connecting any node repre-
senting stub with a node representing proper entry gateway);

representing a relation “network connection” (for edges connecting nodes repre-
senting computing nodes and express possibility of hardware communication
between these nodes).

a

(¢}
|

I—
I

1=
I

For the technical reason we introduce following assumptions:

— the node labeled as A, represents the abstract allocator and is indexed by 0;

— for any edge (0, W,v), the basic label of u is defined as (written in small letters) conca-
tenation of the letter “a” and the basic label of node Vv (i.e. am for the object instance,
ai for the stubs, etc.);

— edges, which link a nodes v representing an object instances (labeled by M) with
a nodes W representing a stubs offering potential services of other instances are labeled
by mi or -mi.

The parallel derivation of an allocation graph, introduced in the paper, is based on the
virtual nodes and edges concept. A virtual node doesn’t represent any real software compo-
nent described by a local allocation graph, but it keeps a necessary information to point
a node representing a real software inside another local graph. The virtual node label is
defined as a concatenation of the letter “V”” and the appropriate basic label (on the diagram,
it will be represent by the black circle). We will use two virtual nodes VE and VI.

A virtual edge is defined as an edge where one of the nodes represents a real node and
the second one represents a virtual node, that points a real node in another local graph (for
the simplicity we assume that edge’s label will be the same as label of the corresponding
virtual node).

We assume that for each virtual edge X = VZ , where VZ points some node labeled
by Z in the graph G,, , there exists a virtual edge VX-> Z inside G, associated with it, where
node labeled by VX points the node X mentioned in the previous edge.

After introducing of productions, which allow us to construct an allocation graph we
will show how the derivation control diagram mechanism helps us to synchronize a work of
allocators in order to fulfill above assumption.

Parallel Allocation of the Distributed Software... 331

As the result, the indexed edge-unambiguous graph, IE-graph representing distributed
system can be described with the help of basic node labels {N,M,E,LA,VE,VI} and basic
edge labels, namely {a,b,c,l,n,am,ae,ai,ve,vi,-vi,-ve,-ai,-ae,-am,-n,-1,-c,-b,-a}.

Five requests, presented below, allow us to describe a very intuitive system which sup-
ports the allocation of the distributed system components by a single allocator:

RQ(add_node), which demands to connect a new computing node to the distributed net-
work;

RQ(all_obj), which demands to allocate an object instance pointed by pattern parameter
with the name pointed by name parameter in the computing node pointed by node_id
parameter;

RQ(select_link), which informs the allocator which service will be associated with the
allocated object instance;

RQ(remove_obj), which demands an object instance to be removed from the system;

RQ(remove_node), which demands the removal of a computing node.

The following requests support (based on Two Commit protocol) synchronization of
the distributed allocation graph by a few allocators:

RQ(find_entry), which asks the allocator about possibility of servicing an object request by
the subsystem controlled by this allocator;

RQ(answer_yes), which informs that the service mentioned in the find_entry request can
be accomplished;

RQ(acceptance), which confirms agreement made with the help of two previous requests;

RQ(confirmation), which informs about the correctness of the local allocation — parameter
commited is set to true or false, appropriately.

The derivation control diagram designed for both controlling local allocation process
and for synchronizing creation of the distributed allocation graph consists of eight nodes
(numbered from 0 to 7), where O is the starting control point and 7 is the final one. Table 1
defines selectors and synchronizing function for these points.

Seven productions presented below allow us to create collection of IE-graphs describ-
ing current allocation state.

For the simplicity of notation we assume that inside of all productions:

1. The symbol G is reserved for the current allocation |E -graph modified during a deriva-
tion steep and the symbol v is reserved for the node in context of which a production is
applied; each graph L of the left-hand side graphs consists of a single node v, so the
homomorphism h is defined as unique homomorphism between v| and v.

2. Attributes of the node indexed by 0, called global attributes, are written by capital
letters.

3. A global attribute CN represents the second node (different from h(vy)) of the edge
currently replaced by the embedding transformation (during interpretation of C(y,out,
v,) for the edge (h(v),y,u)e Dg attribute CN points node u).

332 Leszek Kotulski

4. A value of the attribute a in node w is described by a,,.

5. A function Allocated in:V—V, which for any node representing software component
returns the node representing computing node in which it is allocated; correctness of
this function is based on assumption that an object instance can be allocated only
inside one computing node.

6. An operation COPY_REST, which makes the copies of all edges connecting v with the
rest of graph G (and as a consequence removed from the derivered graph) and not
mentioned in the embedding transformation with one modification — instead of v the
node of the right-hand side production indexed by 1 is placed.

7. A production can be represented graphically

M

U
® > O——

where: = separates left-hand side graph from right-hand graph, — represents directed

edges, labels are inside nodes and above edges, indices of nodes are in parentheses.

Now we will introduce seven productions, that allow to create the graph representing
the current allocation state of the controlled distributed system.

The initial allocation IE-graph consists of a single node labelled by “A” (Z from
def. 2.3).

2)

m _P M @
@ — A—E& N
Next we should be able to enrich hardware environment. The production P, introduces
in the allocation graph G a new node (labeled by N) and associates it (edge labeled with s)
with the node 0 (representing the allocator). The embedding transformation is defined as:
Cy =4 ((s,0ut, V), { (A,(N,true),s,out), (N,(N,true),-n,in), (N,(N,true),n,in) }),
COPY_REST) }

M _R m @
—> (p—9m (»)

When we would like to allocate an instance of an object in the computing node NODE
we must apply the production P, with the embedding transformation defined as follows:

Cy=A{ ((s,out, v), {(A,(N,true),s,out), (M,(N,ry), -a, in) }),
((ai,out, vp), {(A,(Ltrue),ai,out), (M, (I,m,), -mi, in) }),
((ai,out, vp), {(A,(VLtrue),ai,out), (M, (VLx,), -mi, in) }),
COPY_REST) }, where
7;: NODE = namecy,
T,: (req_servivecy, req_typecy)e ENV(m) | rrq A Allocated_in(CN)=NODE)
CN represents a stub to one of the requested services, this stub is allocated in
computing node pointed by NODE.

Parallel Allocation of the Distributed Software...

333

Table 1

Synchronizing function

X

point| condition

condition inside the selector

SF

Exists
any request rq

rq = create_allocator

Create new allocator

1q = ad_node

P1

1q = all_man

P2

1q = find_entry

send(answer_yes

rq = acceptance & proper node exists

Px3

send(confirmation(true...

1q = acceptance & proper node
doesn’t exist

send(confirmation
(false...

For each object’s entry point

P3

All entry points has been visualized

Exists not linked object’s request and
some proper stub has been already
allocated

P4

Exists not linked object’s request and
proper virtual stub has been already
allocated

P4v

Exists not linked object’s request
and none stub exists

All object’s requests have been linked

Stub will represent a local object

P5

Stub will represent an object
descriebed by another allocator

broadcast(find_entry(....

Exists
any request rq
of the answer_yes

rq can be accepted

send(acceptance(...

rq can not be accepted and next
answer is expected

confirmation type

commited, = false

type .
P rq can not be accepted and it is the _
last answer
Exists commited, = true Px2 -
any request rq
of the

334 Leszek Kotulski

While allocating an object we must explicitly define the services which it offers. So we
should remember (in the global variable AM) the index of a node representing an alloca-
ted object (generated in the previous production) and for each offered service (i.e
V e;e ENV(m) | sry) we will execute the production P;. The embedding transformation is
defined as:

Cy={ ((am,out, v;), {(A,(M,true),am,out), (E, (M,n3),-b,in) }),
COPY_REST) }, where nt3: CN=AM.

m

P
LN 1) ae @2]

For all object requests we ought to link it with some stub representing a remote service
of another object. If such a service already exists, we use the production P,, which has the
following embedding transformation:

Cy=A{ ((-mi,in, v|), {M,(I,1ty), -c, in), M, (I,not mty), -mi, in)}),
COPY_REST }, where my: CN=X

1) Pj 11 al @(2)

The production P5 which allocates a new stub, has the following embedding transfor-
mation:

Cs={ ((ae,out, v|), {(A,(E,true),ae,out), (I,(E,ms), -1, in) }),

((am,out, v|), {(A,(M,true,am,out), (I,(M,n4),c,in) }),
COPY_REST }, where 5: CN=X A 1tg: CN=AM

The last production is not intuitive because the main action (adding the edge between
the allocated object and node of right hand side indexed by (2)) is described by the embed-
ding transformation (with respect of its connection with the node representing an allocator, by an
edge labeled by am, it will be also connected with the node labeled by I indexed by (2)).

When the currently allocated object instance (maintained by the allocator Ag) requests
a service offered by an object instance created by allocator A, then the production Py is
applied to allocation graph maintained by Ag (after acceptance of service request) and the
production P is applied to allocation graph maintained by Ar (after confirmation(true,...)
service request).

The production P¢ which allocates a new stub, has the following embedding transfor-
mation:

Ce={ ((ae,in, v)), {(E,(Atrue),ae, in), (VI (A,true),ai, in)} }.

(2)

@(1) Péj ®(1] | @

Parallel Allocation of the Distributed Software... 335

The production P,, which allocates a new stub, has the follo-wing embedding transfor-
mation:

C,={ ((aiin, v), {{L(Atrue),ai, in), (VE, (Atrue),ae, in)} }.

2

e

We assume that attributes of virtual nodes VI and EV unambiguously bind them with
nodes E and I inside their local allocation graphs, so any modification of VI2E or I>VE
edges can be made in cooperation of the both allocators.

5. Conclusions

A distribution (and a partial replication) of the information concerning the way of allo-
cation of the software components into a global computer network is necessary with respect
to improvement of allocation efficiency and system reliability. The example of formal de-
scription in such a situation, presented in the paper, seems to be specially interesting
in context of an increasing complexity of software and hardware levels. Using graph trans-
formation to support online control of software allocation leads us to the question of
the computational complexity of the tool supporting the solution. The aecdNLC graph
grammar has linear computational complexity of derivation of next allocation graph, con-
sidered here as local graphs, depending on the number of nodes in the (local) graph (d,).
The introduced protocol depends linearly on the number of local graphs (k). If we denote
n=max(k,d;,d,,...dy) then the final complexity is linear with respect of n (i.e. O(n)). Let us
note that a dynamically developed infrastructure of heterogeneous networks increases the
influence of parameter k on a final system effectiveness. The usefulness of the aedNLC
graph in the following applications has been presented: for supporting of the agents migra-
tion in [4], and for the distributed adaptive design in [13].

One of the primary requirements for the analyzed allocation construction is the capa-
bility of enforcing modularity in definition of the allocation behavior [24]. Group concept
[12, 17] allows us to represent part of a distributed system as one complex object distribu-
ted over many computing nodes. The internal group structure is described by IE graph, so
during its allocation we need to parse this graph. Parsing in aedNLC graph grammar has
O(d2) computational complexity, so in this case the allocation has also polynomial compu-
tational complexity. We outline here the polynomial complexity of parsing, membership
and derivation algorithms in the proposed graph transformation scheme, because of well
known computational complexity problems in most of graph transformation systems. This
is the main reason why very elegant DIST(GRAPH) notion [22, 23] based on algebraic
(push-out) approach is used only to specification of the distributed system behavior. More-
over, the whole graphs structure (network and local graphs) is maintained in one place, what

336 Leszek Kotulski

can create both efficiency and reliability problems during the allocation of the software in
WANS.

The online reaction on the external events is not new (see GRACE (Kreowski at all
2001) but it should be noted that introduced in the paper cooperation of DENV (described
as finite state automata with some synchronization rules) with events (represented by
request sent as a message) enable describe these cooperation in a distributed manner.

Finally, it can note that, the presented solution can be used to solve other problems,
which can be described as an intensive local graphs transformation and coordination of
local graph consistency made from time to time. Such a computation model appears in
pattern recognition and distributed data mining.

References

[1] APM 1991: ANSAware Release 3.0 Reference Manual. Architecture Projects Management Ltd,
Poseidon House, Castle Park, Cambridge 1991.

[2] Baldan P., Corradini A., Ehrig H., Lowe M., Montanari U., Rossi F., Concurrent Semantics of
Algebraic Graph Transformations. In: Ehrig, Kreowski, Montanari & Rozenberg (Eds), Hand-
book of Graph Transformation, vol. 3, 1999, Word Scientific.

[3] Bardohl R., Taentzer G., Minas M., Schiirr A., Application of graph transformation to visual Lan-
guage. In: Ehrig, Engels, Kreowski & Rozenberg (Eds), Handbook of Graph Transformation, vol.
2, 1999, Word Scientific.

[4] Ehrig H., Heckel R., Korff M., Lowe M., Ribeiro R., Wagner A., Corrardini A., Algebraic
Approaches to Graph Transformation II: Single Pushout and Comparison with Double Pushout
Approach. In: G. Rozenberg (Eds), Handbook of Graph Transformation, vol. 1, 1997, Word
Scientific.

[5] Engelfriet J., Rozenberg G., Graph grammars based on node rewriting: an introduction to NLC
graph grammars. LNCS, 532 (1991), 12-23.

[6] Flasinski M., Characteristic of edNLC-graph Grammars for Syntactic Pattern Recognition. Com-
puter Vision, Graphics and Image Processing, vol. 42, 1989, 1-21.

[7] Flasinski M., On the Parsing of Deterministic Graph Languages for Syntactic Pattern Recogni-
tion. Pattern Recognition, vol. 26, 1993, 16-93.

[8] Flasinski M., Power Properties of NCL Graph Grammars with a Polynomial Membership Pro-
blem. Theoretical Computer Science, vol. 201, 1998, 189-231.

[9] Heckel R., Kiister J., Taentzer G., Confluence of Typed Attributed Graph Transformation Systems.
In: Corradini, Ehrih, Kreowski & Rozenberg (Eds.), 1 Int. Conference, ICGT 2002, Barcelona,
Spain, Springer LNCS 2505, 2002.

[10] Janssens D., Rozenberg G., Verraedt R., On Sequential and Parallel Node-rewriting Graph
Grammars. Computer Graphics and Image Processing, vol. 18, 1982, 279-304.

[11] Kotulski L., Flasinski M., On the Use of Graph Grammars for the Control of a Distributed
Software Allocation. The Computer Journal, vol. 35, 1992, A167-A175.

[12] Kotulski L., Jurek J., Moczurad W., Object-Oriented Programming in the Large Using Group
Concept. In: Computer Systems and Software Engineering — 6th Annual European Conference,
Hague 1992, 510-514.

[13] Kotulski L., Strug B., Distributed Adaptive Design with Hierarchical Autonomous Graph Trans-
formation Systems. ICCS 2007, LNCS 4488, Beijing(China), 880—887.

[14] Kotulski L., Supporting Sofiware Agents by the Graph Transformation Systems. V.L. Alexandrow
et al (eds), ICCS 2006, LNCS 3993, Reading (UK), 887-890.

Parallel Allocation of the Distributed Software... 337

[15]

[16]
[17]
(18]

[19]
[20]

(21]
[22]
(23]

[24]

Kotulski L., Model systemu wspomagania generacji oprogramowania wspotbieznego w srodowi-
sku rozproszonym za pomocq gramatyk grafowych. Postdoctorals Lecturing Qualifications, Ja-
giellonian University Press, 2000, ISBN 83-233-1391-1.

Kreowski H.-J., Busatto G., Kluske S., GRACE as a unifying approach to graph-transformation-
-based specification. Electronic Notes in Theoretical Computer science vol. 44, no 4, 2001.
Magee J., Kramer J., Sloman M., The Conic Support Environment for Distributed System. In:
Distributed Operating System — Theory and Practice, 1989.

Microsoft, 1996. Distributed Component Object Model Protocol—DCOM/1.0 (MSDN Library,
Specifications).

NATO ASI Series F, 28.

OMG 2004: Common Object Request Broker Architecture (CORBA/IIOP), 02-12-2002, version
3.0.

OMG 2007: Unified Modeling Language. v 2.1.1. www.omg.org.

Taentzer G., Koch M., Fisher 1., Volle V., Attributed Graph Transformation with Application to
Visual Design of Distributed Systems. In: Ehrig, Kreowski, Montanari & Rozenberg (Eds), Hand-
book of Graph Transformation, vol. 3, 1999a, Word Scientific.

Taentzer G., Distributed Graphs and Graph Transformation, Applied Categorical Structures.
Special Issue on Graph Transformation, vol. 7, No. 4, 1999b.

Zambonelli F., How to achieve Modularity in Distributed Object Allocation. ACM SIGPLAN
Notice, vol. 32(6), 1997, 75-82.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

