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1. Introduction

In make-to-order manufacturing one of the basic goals of the long-term scheduling is to
maximize customer service level, i.e., to maximize the fraction of customer orders filled on
or before their due dates. A typical customer due date performance measure is minimization
of the number of tardy orders, e.g. [1, 2].

The purpose of this paper is to propose mixed integer programming formulations for
a multi-objective, long-term production scheduling in a flexible flowshop. The scheduling
objective is to allocate a set of customer orders with various due dates among planning pe-
riods to minimize, first number of tardy orders, then number of early orders, and finally to
level production resources over a planning horizon, e.g. [3, 4, 5]. Minimizing the number of
early orders help to reduce the inventory of finished products waiting for the delivery to
customers, whereas levelling the resource usage reduces unit production costs [6].

In the literature on production planning and scheduling the integer programming mo-
dels have been widely used. In industrial practice, however, the application of integer
programming for scheduling is limited. For example, a hierarchical approach and integer
programs for production scheduling in make-to-order company are presented in [1], however
computational results are based on developed heuristics. An integer goal programming for-
mulation for production scheduling with a due date related criterion is also presented in [2],
and the focus is again on application of heuristic approaches.

The paper is organized as follows. In the next section the description of make-to-order
production scheduling in a flexible flowshop is provided. The integer programming formula-
tions for the weighting and the lexicographic approach to multi-objective production schedu-
ling are presented in Section 3. Numerical examples modeled after a real-world make-to-
order assembly system and some computational results are provided in Section 4. Conclu-
sions are presented in the last section.
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2. Problem Description

The production system under study is a flexible flowshop that consists of m processing
stages in series and each stage i € I = {1, ..., m} is made up of m; > 1 identical, parallel
machines. In the system various types of products are produced in a make-to-order envi-
ronment responding directly to customer orders. LetJ be the set customer orders. Each order
J € Jis described by a triple (a;, d}, s;), where a; is the order arrival date (e.g. the earliest pe-
riod of material availability), d; is the customer due date (e.g. customer required shipping
date), and s; is the size of order (quantity of ordered products). Denote by J(d) the subset of
orders with the same due date d € D, where D = {d; : j € J} is the set of distinct due dates of
all customer orders.

Each order requires processing in various processing stages, however some orders may
bypass some stages. Let J;  J be the subset of orders that must be processed in stage i, and
let p;; > 0 be the processing time in stage i of each product in order j € J;. The orders are
processed and transferred among the stages in lots of various size and let b; be the size of
production lot for order j.

The planning horizon consists of 4 planning periods (e.g. working days).

Let T = {1, ..., h} be the set of planning periods and c;, the processing time available in
period ¢ on each machine in stage i.

It is assumed that each customer order must be fully completed in exactly one planning
period and the available capacity is sufficient to schedule all orders during the planning horizon.

The objective of the long-term production scheduling is to assign customer orders to
planning periods and to select machines for assignment in every period to minimize numbers
of tardy and early orders, respectively as a primary and secondary optimality criterion and to
level machine assignments as an auxiliary criterion.

The two approaches will be applied:
1) weighting,
2) lexicographic.

Customer Orders ¢

Order
Assignment
(M1)
Number of Tardy, Early, Orders: | Uy, Egum

Assignment of Tardy, Early Orders: v {"j,djﬂtj, "j,dftj}

Machine
Assignment
M2)

Production Schedule l Wip wirt

Fig. 1. A lexicographic approach to multi-objective production scheduling
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In the weighting approach the triple-objective scheduling problem is reduced to a single
objective problem by introducing the weights representing the relative importance of the
three objectives. In the lexicographic approach first the customer orders are allocated among
planning periods to find the optimal numbers of tardy and early orders and then the final
production schedule is determined to level machine assignments over the horizon for a mini-
mum number of tardy and early orders (see Fig. 1).

3. Multi-Objective Production Scheduling

In this section the integer programming formulation are presented for the two appro-
aches to multi-objective production scheduling: M0 for the weighting approach, and a pair
M1, M2 for the lexicographic approach. Decision variables are defined in Table 1.

Table 1
Decision variables

w = 1, if order j is performed in period t; otherwise v;, = 0

(order assignment variable)

w;, = number of machines selected for assignment in stage i in period ¢

(machine selection variable)

Egun> Uy, = number of early orders, tardy orders, respectively
M

max

maximum number of machine assignments in a single planning period

Model MO: Customer order and machine assignment
Minimize

>\'1 2 vjt+7»2 Z le+>"3Mmax (1)

jeJiu>dj jeJ:aj St<dj
subject to:

1. Order assignment constraints
— cach customer order is assigned to exactly one planning period:

dvi=L jelJ )

teT

2. Machine assignment constraints

In every period:

— the number of machines selected for assignment at each stage is not greater than the
maximum number of available machines,

— the number of machines selected for assignment at each stage is not greater than the
total number of assigned production lots,
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— the total number of machines selected for assignment cannot exceed the maximum
number of machine assignments to be minimized,

— the demand on capacity at each processing stage cannot be greater than the total
capacity of machines selected for assignment in this period,

wy<my ieLLte T 3)

WltSZ[S]/b]]V]t, iEI,tET (4)
jed;

zwitSMmax; teT (5)

iel

2 PijSivj Scywys i€l teT (6)

JjeJ;

3. Variable integrality constraints

S {0,1};je J, te T:t2aq; @)
w;2 0, integer;ic I,te T ®)
M . 2 0, integer ©)

where [1 is the least integer not less than -.

In the objective function (1) tardy orders are penalized at a much higher rate than early
orders, and the early orders are penalized higher than maximum machine assignments, i.e.,
7\.1 >> 7\.2 > 7\.3.

Model M1: Customer order assignment

Minimize

Mo vjt+7»2 D Vi (10)

jeJi>d; jeJia;<t<d;

subject to (2), (7) and

Capacity constraints

— in every period the demand on capacity at each processing stage cannot be greater
than the maximum available capacity in this period,

D sy Scpmy; i€l el an
jel;

where A; >>A,.
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The solution to M1 (Fig. 1) determines the minimum number of tardy orders u,,,,
minimum subset of tardy orders JT —J and their assignment to planning periods Vidj; = 1,
J € JT, where 1;2 1 is the tardiness of order j € JT. Simultaneously, the minimum number of
early orders E,,, and the subset of early orders JE c.J are determined as well as their assign-
ment to planning periods Vi = 1, j € JE, where 1; 2 1 is the earliness of order j € JE.
Implicitly, the subset JD = J \ JE U JT of orders assigned on due dates is determined, i.e.,

such that v]-,d]_ =1,je JD.

The smaller the earliness for the early orders, the lower the inventory of the finished
products waiting for the delivery to customers. Similarly, the smaller the tardiness of the
tardy orders, the lower the input inventory of purchased materials waiting for processing.
Therefore, at the bottom level problem the assignment of orders j € JD on due dates should
remain unchanged, and the earliness 7; of the early orders j € JE, and the tardiness T; of the
tardy orders j € JT should not be increased.

Given the minimum numbers of early and tardy orders, the subsets of early orders and
tardy orders, the maximum earliness for early orders, and the maximum tardiness for tardy
orders, the next optimization step is to find production schedule such that levels machine
assignments over the planning horizon either for minimum numbers of early and tardy orders
or, in addition, for limited order earliness and tardiness.

The mixed integer program M2 for the bottom level problem can be formulated alterna-
tively, either for minimum numbers of early and tardy orders (order assignment constraints
1a) or for limited order earliness and tardiness (order assignment constraints 1b).

Model M2: Machine assignment
Minimize
Miax (12)

subject to (3)—(9) and:
la. Order assignment constraints

— numbers of tardy and early orders are at minimum:

z Vjt = Us*um (13)
jeJi>d;
Y Vi=Egum (14)

jeJiast<d;

or

1b. Order assignment constraints

— on due date assignment constraints,

vjdj=l;je JD (15)
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— early orders assignment constraints (the earliness cannot be greater than 1)),

D vi=1 jeJE (16)

1€Td ;—1;<1<d;
— tardy orders assignment constraints, (the tardiness cannot be greater than 1)),

D vip=1 jeJT (17)

teT:dj<tsdj+rj

Denote by M2a and M2b, model M2 with order assignment constraints 1a and 1b, re-
spectively.

The solution to M2 determines the optimal production schedule, i.e., the optimal assign-
ment of customer orders to planning periods, {v;ft} and a leveled machine assignment over
the horizon, {w,-*t} such that numbers of tardy and early orders are at minimum or, in addition
(model M2b), the corresponding tardiness and earliness are limited.

The mixed integer programs M0 and M1 can be enhanced by adding cutting constraints
that are derived by relating the demand on required capacity to available capacity for each
subset of orders with the same due date, see [5].

4. Computational Examples

In this section numerical examples and some computational results are presented to illu-
strate possible applications of the proposed formulations and to compare weighting with
lexicographic approach (model MO with a pair of models M1, M2). The examples are mode-
led after a real world distribution center for high-tech products, where finished products are
assembled for shipping to customers.

In the computational experiments four types of the test problems are constructed with
the following four regular patterns of demand:

1) Increasing, with demand skewed toward the end of the planning horizon.

2) Decreasing, with demand skewed toward the beginning of the planning horizon.

3) Unimodal, where demand peaks in the middle of the planning horizon and falls under
available capacity in the first and last days of the horizon.

4) Bimodal, where demand peaks at the beginning and at the end of the planning horizon
and slumps in mid-horizon.

Pattern 1) requires some orders to be completed earlier, for pattern 2) a majority of
orders must be moved later in time, whereas patterns 3) and 4) require that orders are moved
both early and late to reach feasibility.

For each pattern demand, the following three scenarios will be considered with different

2 jeJ PijSj

total capacity ratio r = max; ;| ———
m 2 er Ci

of the total demand on capacity to total availa-

ble capacity:
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— scenario [ with low tightness of capacity constraints: » = 0.553,

— scenario II with medium tightness of capacity constraints: » = 0.738,
— scenario III with high tightness of capacity constraints: » = 0.923.

A brief description of the production system, production process, products and customer

orders is given below.

1. Production system:

— six processing stages: 10 machines in each stage i = 1, 2; 20 machines in each stage
i =3,4,5; and 10 machines in stage i = 6.

2. Products:
— 10 product types;

— 100 customer orders, each consisting of several suborders (customer required ship-
ping volumes); every suborder has a different volume ranging from 5 to 6600 pro-
ducts, the same arrival date (period 1), and different due date, and each suborder is to
be completed in a single day, the total number of suborders is ranging from 669 to 816
and the total demand for products from 322130 to 537995 depending on demand

pattern and the capacity scenario;

— production lot sizes: 200, 200, 300, 100, 100, 100, 200, 200, 300, 100, respectively for

product type 1, 2, 3,4,5,6,7,8,9, 10.

3. Processing times (in seconds) for product types:

product type/stage
1
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4. Planning horizon: # = 30 days, each of length 2x9 hours.

15
15
10
15
15
10
15
15
10
10

Notice that the suborders in the computational experiments play the role of orders in the

mathematical formulations.

In models M0 and M1, the weights used for tardy orders, early orders and maximum
machine assignments are A; = 250, A, = 10 and A5 = 1, respectively.
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The characteristics of integer programs for the three scenarios and various demand pat-
terns and the solution results are summarized in Tables 2—4. The size of the integer programs
MO0, M1 (enhanced with the cutting constraints [5]) and M2 (M2a, M2b) is represented by
the total number of variables, Var., number of binary variables, Bin., number of constraints,
Cons., and number of nonzero elements in the constraint matrix, Nonz. The last two columns
of Tables 2—4 present the solution values and CPU time in seconds required to prove optima-
lity of the solution.

Table 2
Computational results for scenario |
Demand pattern/Model | Var. Bin. Cons. | Nonz. Usums Esums M max CcpU’
Increasing/M 0 15990 |15809 [2162 226520 |0,4,61 2.33
Increasing/M 1 15809 [15809 |1940 [170152 |0,4,— 139
Increasing/M 2a 15990 | 15809 |1201 141920 |0, 4, 61 275
Increasing/M 2b 168 19 9 329 0,4, 67 0.01
Decreasing/M 0 10292 |10111 |2136 [135044 |0,4,61 1.43
Decreasing/M 1 10111 | 10111 | 1892 98335 0,4,— 0.64
Decreasing/M 2a 10292 |10111 |1201 89920 0, 4, 61 1.83
Decreasing/M 2b 160 10 38 208 0, 4, 61 0.01
Unimodal/M0 11431 |11250 [1915 [152691 |0,5,73 2.40
Unimodal/M1 11250 | 11250 |1671 112205 [0,5,- 1.07
Unimodal/M2a 11431 | 11250 |1093 100466 |0, 5, 73 2.88
Unimodal/M 2b 173 37 91 407 0,5,73 0.01
Bimodal/M0 10597 |10416 |1857 |142432 |0,9,65 2.06
Bimodal/M 1 10416 | 10416 |1612 104902 |0,9,- 0.90
Bimodal/M2a 10597 | 10416 |1060 {93805 0,9, 65 3.12
Bimodal/M2b 188 35 119 434 0,9, 67 0.01

"CPU seconds for proving optimality on a PC Pentium 2.4 GHz, RAM 512MB /CPLEX v.9

The optimal production schedules and machine assignments obtained for various de-
mand patterns in scenario II, using the lexicographic approach with a pair of models M1,
M2a are shown in Figures 2 and 3 to illustrate the examples.

The computational experiments have been performed using AMPL programming lan-
guage and the CPLEX v.9 solver on a laptop with Pentium IV at 2.4GHz and 512MB RAM.
The results have indicated that for scenario I and II with low and medium tightness of capaci-
ty constraints both the weighting and the lexicographic approach are capable of finding pro-
ven optimal schedules in a short CPU time. The lexicographic approach with model M2b at
the bottom level outperforms the weighting approach for scenario III with a high tightness of
capacity constraints. However, when model M2a is used for that scenario a large computa-
tion time is required to find the first feasible solution (Tabl. 3 shows the results for model
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M2b only). On the other hand, the weighting approach outperforms the lexicographic appro-
ach with model M2b at the bottom level with respect to the auxiliary criterion of levelling

machine assignments for most test examples.

Table 3
Computational results for scenario 11

Demand pattern/Model [ Var. Bin. Cons. | Nonz. Usums Esums M max CPU’
Increasing/M 0 16037 |15856 |[2160 |221880 |0,21,62 19.56

Increasing/M 1 15856 |[15856 1940 165454 0,21, - 2.08
Increasing/M2a 16037 |15856 (1203 142388 |0, 21, 62 12.45
Increasing/M 2b 405 234 223 1694 0, 21, 68 0.04
DecreasingM 0 21786 |21605 |1623 [281371 |1,20,69 17.07
DecreasingM 1 21605 |[21605 (1413 205250 |1,20,- 7.89
0Decreasing/M 2a 24541 |21605 (1204 |218158 |1, 20, 69 647.00
DecreasingM 2b 145 23 79 268 1,20, 71 0.01
Unimodal/M0 11456 |11275 [1938 |156675 |0, 16,66 4.70
Unimodal/M 1 11275 11275 |[1706 116546 |0, 16, — 2.54
Unimodal/M2a 11456 11275 |1095 100714 |0, 16, 66 6.02
Unimodal/M2b 251 103 120 759 0, 16, 66 0.02
Bimodal/M 0 10618 [10437 [1860 |140044 |0,22,70 4.60
Bimodal/M 1 10437 10437 1623 102772 |0, 22, - 2.02
Bimodal/M2a 10618 10437 |1062 93293 0,22,70 10.90
Bimodal/M2b 235 88 138 671 0, 22, 70 0.02
“CPU seconds for proving optimality on a PC Pentium 2.4 GHz, RAM 512MB /CPLEX v.9

Table 4
Computational results for scenario 111

Demand pattern/Model | Var. Bin. Cons. | Nonz. Usms Esum » M max cru’
Increasing/M 0 16110 [15929 (2164 [220987 |[0,44,71 >3600
Increasing/M 1 15929 (15929 1949 164519 |0,44— 4.56
Increasing/M 2b 411 251 223 1624 0,44, 71 0.04
Deer easing/ M0 24636 |24455 [1389 [302086 |10,40,74 >3600
Decreasing/M 1 24455 124455 |1179 |216335 |10, 40, - >3600
Deereasing/M 2b 182 44 120 452 10, 40, 75 0.01
Unimodal/M0 18199 |18018 |1453 |239313 |2, 38,69 >3600
Unimodal/M 1 18018 | 18018 |1243 176094 |2, 38, — >3600
Unimodal/M2b 189 54 111 428 2,38,71 0.03
Bimodal/M0 17768 | 17587 |1391 230434 |1,51,76 >3600
Bimodal/M 1 17587 | 17587 | 1181 168888 |1, 51, - >3600
Bimodal/M2b 148 38 90 333 1,51,76 0.01

“CPU seconds for proving optimally on a PC Pentium 2.4 GHz, RAM 512MB /CPLEX v.9




220 Tadeusz Sawik

Increasing Demand/Production
35000 -
1]
© 30000
> |
8 25000 it
& 20000 - MmDemand
S 15000 roduction
[}
2 10000 +
g 000
ER
0 - ;
1 3 5 7 9 111315 17 19 21 23 25 27 29
Day
Decreasing Demand/Production
35000 -
2 30000 ii
=)
T 25000 -
2 = I
o | 5
S 15000 - | EProduction
3 | B
.g 10000 - =l
S 4 I i L .
2 oo ITHEHTRER
o /AN BENNREREENEAE AERRAR B
1 3 5 7 9 1113 1517 19 21 23 25 27 29
Day
UnimodalDemand/Production
35000 -
i)
© 30000
'5 25000 1
o 20000 — #Demand
© 15000 - ! BEIProduction
[
-g 10000 -
> 4 5 |
2 5000
o 4 188
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Day
Bimodal Demand/Production
40000 -
[2]
S 35000
S 30000
a 25000 -~
G 20000 ;ge:an:
g 15000 ]_ i rogucltion
E 10000 R
[ ]
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Day

Fig. 2. Production schedules for various demand patterns in scenerio 11
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5. Conclusions

This paper has presented and compared the weighting and the lexicographic approach

and the corresponding integer programming formulations for the multi-objective production
scheduling in make-to-order manufacturing environment. The computational experiments
modeled after a real-world make-to-order assembly system in the electronics industry have
indicated that the two approaches are capable of finding proven optimal solutions for large
size problems in a reasonable computation time using commercially available software for
integer programming.
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