
����������	
	���
	
	���	�	
	������	���

� ���������	��	�� ����!�� 	"�#�!����$�%	&!�$'()	���*�!����	��	��$+��'� �

�� ���������	��	"��,���!	-$���$�%	���*�!����	��	&!�$'()

��� �+��	!���(!$+)(�	��,,�!��.	#�	�/0	1!(��	2	����	��3	�2

�

&�4$��$+	/�5�46��%	78���	1!(#�)�6��%	���$���'()	&�.�$6���

�������		
����
���������
�������
����

��
���������������������������������
��������
��������

� �!��
��"�����

In the single machine total weighted tardiness problem (TWTP), denoted as 1 || i iw T∑
a set of jobs N = {1, 2, ..., n} have to be processed without interruption on a single machine
that can handle only one job at a time. Each job i ∈ N has integer processing time pi, due
date di, and positive weight wi. For a given sequence of jobs, the (earliest) completion time
Ci, tardiness Ti = max(0, Ci – di) and cost fi(Ci) = wiTi of job i ∈ N can be computed. The
objective is to find a job sequence which minimizes the sum of the costs given by formula

1 1

() .
n n

i i i i
i i

f C w T
= =

=∑ ∑
The total weighted tardiness problem is NP-hard in strong sense (Lawler [11] and

Lenstra et al. [12]). The enumerative algorithms require considerable computer resources
both in terms of computation times and core storage. Therefore, many algorithms have been
proposed to find near optimal schedules in reasonable time. These algorithms can be broad-
ly classified into construction and interchange methods.

Interchange methods start from an initial solution and repeatedly try to improve the
current solution by local changes. The interchanges are continued until a solution that can-
not be improved is obtained which is a local minimum. To increase the performance of local
search algorithms, there are used metaheuristics like Tabu Search (Crauwels et al. [3]),
Simulated Annealing (Matsuo et al. [13]), Genetic Algorithms (Crauwels et al. [3]), Ant
Colony Optimization (Den Basten et al. [4]). A very effective local-search method has been
proposed by Congram et al. [2], and next improved by Grosso et al. [10]. The key aspect of
the method is its ability to explore an exponential-size neighborhood in polynomial time,
using a dynamic programming technique.

In this paper, we present new properties of the problem associated with the so-called
blocks of jobs, and a fast algorithm based on a tabu search approach with a specific neigh-
borhood which employs the properties and a compound moves technique.

�� �����	�
	���	�
��	���	�	�������
��	��	�������	���	�
�

#��������	�
����
��
�����
�����
	
���
��

Each schedule of jobs can be represent by permutation π = (π(1), π(2), ..., π(n)) on set N.
Let Π denotes the set of all such permutations. The total cost of π ∈ Π is

() ()
1

()
n

i i
i

F w Tπ π
=

π = ∑ with Tπ(i) = max{0, Cπ(i) – dπ(i)}, where () ()
1

i

i j
j

C Pπ π
=

= ∑ is a completion time

of the job π(i). Job π(i) is considered as early one, if it is completed before its due date
(i.e. Cπ(i) ≤ dπ(i)), or tardy if the job is completed after its due date (i.e. Cπ(i) > dπ(i)).

The problem is to find a permutation π∗ ∈ Π which minimizes the function F on the set
Π, i.e. F(π∗) = min{F(π): π ∈ Π}.

Each permutation π ∈ Π is decomposed into m (m ≤ n) subsequences B1, B2, ..., Bm,
called blocks in π, each of them contains the jobs having in common specific properties,
where:
�9 ���:	;π;��<��π;���=	�<��999��π;������<<��π;��<<������	�	�	�	���≤����

��:	�����	999�������	�	��	���:		9

�9 ���	���		
��	
�∈�����
�����	���	�
��
����	�
�����
�>
������

�
�≥ �π����
���<

�

�
�≤�
π����
	�	�
 ;��<

�����	
π����
	�		
	������	�������
�	���		
�	π;��<�	�9�9	
π����

	�	�π����
	�	�π����

�	���

���	�
��	���

�∈ ����
��������	�
�����
�	��	;
�	��<	��	
	�
���	;
�	�
���<	
��	��	π9
?9 �����	�
@��
�	� ���A ����	
�	π���	�����	
��	���		
��	�
�����	������	�
�����
�	��	
�

�
�����
�	��9

By the definition, there exist two type of blocks implied by either C1 or C2. To distin-
guish them, we will use the E-block and T-block notions (or alternatively BE

k and BT
k), re-

spectively. Jobs π(fk) and π(lk) in Bk are the first and last ones, respectively.
With respect to T-blocks BT

k in π, it should be noticed that by Condition C2, for any
permutation of jobs within BT

k (i.e. in the positions fk, fk + 1, ..., lk – 1, lk of BT
k), all the jobs

are tardy. Therefore, an optimal sequence of the jobs within BT
k of π can obtained, using

well-known Weighted Shortest Processing Time (WSPT) rule. The WSPT rule creates an
optimal sequence of the jobs in the non-increasing order of the ratios wj /pj.

Fundamental Block Properties of the TWTP are derived from the following Theorem.

Theorem 1 [1]. Let π ∈ Π be any permutation with blocks B1, B2, ...,Bm, and let the
jobs of each T-block of π are ordered according to the WSPT rule. If the permutation β has
been obtained from π by an interchange of jobs that F(β) < F(π), then in β:
;�< ����������	��
������������������������������	��
����������������������999����������������

��∈�B���?��999���C����
;��< ����������	��
������������������������������	��
��������������������������� 999��������

�������∈�B������999�����C�

Note that Theorem 1 provides the necessary condition to obtain a permutation β from π
such that F(β) < F(π).

!���"	�##��	�
DE��	�	$�	��
	�������
�	���	$�����	%	�
������ �F

$�������
��	�������������%
�����	����
�	�&���'��()*

Currently, Tabu Search approach, (see Glover [6]) is one of the most effective methods
using local search techniques to find near-optimal solutions of many combinatorial intracta-
ble optimization problems, such as the vast majority of scheduling problems. This tech-
nique aims to guide the search by exploring the solution space of a problem beyond local
optimality. The main idea of this method involves starting from an initial basic job permuta-
tion and searching through its neighbourhood, a set of permutations generated by the
moves, for a permutation with the lowest makespan. The search then is repeated starting
from the best permutation, as a new basic permutation, and the process is continued. One of
the main ideas of TS is the use of a tabu list to avoid cycling, overcoming local optimum, or
continuing the search in a too narrow region and to guide the search process to the solutions
regions which have not been examined. The tabu list records the performed moves that, for
a chosen span of time, have tabu status and cannot be applied currently (they are forbidden),
that is they determine forbidden permutations in the currently analyzed neighbourhood. The
list content is refreshed each time a new basic permutation is found, the oldest element is
removed and the new one is added. In our algorithms, a tabu list with dynamic length is
applied that assists us additionally to avoid trapped at a local optimum. The algorithm TS
terminates when a given number of iterations has been reached without improvement of the
best current makespan, the algorithm has performed a given number of iterations (Maxiter),
time has run out, the neighbourhood is empty, a permutation with a satisfying makespan has
been found, etc.

In our algorithm, denoted here as TS+M, are used some of the components that have
been proposed by Grabowski and Wodecki [8, 9], where they were successfully applied on
those very fast tabu search algorithms for the classical flow shop and job shop problems. In
this paper, we extend these elements in the original or modified form, to the problem con-
sidered.

$������&�����
���
��������
�

One of the main components of a local search algorithm is the definition of the move
set that creates a neighbourhood. A move changes the location of some jobs in a given
permutation. In the literature we can meet many types of a move based on interchanges
of jobs on a machine (see [7]). The intuition following from Theorem 1 suggests that the
„insert” or „swap” type moves should be the most proper ones for the problem considered.

Let v = (x, y) be a pair of position in a permutation π, x, y ∈ {1, 2, ..., n}, x ≠ y. The pair
v = (x, y) defines a move in π as follows:

;�< &�����	�
'�	;������<�	��	�����	���		
�	π;�<	��	���
'��	��
�	���	
�����
�	�
����
�	��	
��

��@�	������	��	��	
	�
����
�	����	π9	(� �	�
'�	��:	;����<	�����
���	
	���� �
��
�	π����
�

π���	���	�
��
����	�
�>

π��:	;π;�<��999��π;����<��π;��=	�<��999��π;�<��π;�<��π;��=	�<��999��π;	<<�
��	�� ���

π��:	;π;�<��999��π;����<��π;�<��π;�<��999��π;���<��π;��=	�<��999��π;	<<�
��	��!���

�G)�
����
	!�*�
"��	+,-��	.�	����"��	%���-���	�)����"�

 ��! $�	#	��"�	
�����<�	��	�����	���		
��	π;�<	
��	π;�<�	��≠	��	
��	�������
����	��	�
��

�
����
��	��
��	����	π9	/
��	���	�
'�	��:	;����<	�����
���	π����
�	π���	���	�
��
����
�
����

π��:	;π;�<��999��π;���<��π;�<��π;��=	�<��999��π;����<��π;�<��π;��=	�<��999��π;	<<�
��≠	��

#�����	��	���	��������
�	
�	#0�
'��	��	�
��
��	��
�	��:	;����<	:	;����<�	����	��	��	� ��������

�
	�
������	���	#0�
'��	��:	;����<	����	�� ��9

The neighbourhood of π consists of permutations πv obtained by moves from a given
set Z, and denoted as �(Z, π) = {πv | v ∈ Z}. The proper selection of Z is very important to
construct an effective algorithm.

In our tabu search algorithm TS+C, we will employ the set of I-moves

{ } { }
1

1 1
1

(,) | (,) |1 ,
k

k

lm

k k
k x f

IM x y f y n x y y l
−

+ −
= =

⎡ ⎤= ≤ ≤ ∪ ≤ ≤⎣ ⎦� �

and the set of S-moves

{ }
1

1
1

(,) | .
k

k

lm

k
k x f

SM x y f y n
−

+
= =

= ≤ ≤� �

Finally, in our algorithm, we use the following set of moves

M = IM ∪ SM,

which creates neighbourhood �(M, π).
From the definition of M, it follows that each move v ∈ M satisfies the necessary con-

dition of Theorem 1.
In order to decrease the computational effort for the search, we propose a reduction of

the neighbourhood size by using elimination criteria.
Suppose that we have found that there exists an optimal permutation whereby, for job j,

the set of jobs b(j) precedes j, and the set of jobs a(j) follows j. Any established relation „i
precedes j” implies that i ∈ b(j) and j ∈ a(i). Let (),a j j = 1, 2, ..., n, be the complement set
of a(j), i.e. ()a j = N –a(j). The sets a(j) and b(j) can be created by application of the
following theorem.

Theorem 2 [15]. There exists an optimal permutation whereby job i precedes job j if at
least one of the conditions (1)–(3) is satisfied:

�9 "��≥�"
�����≤���
�����≤����;�
��Σ�∈����	���=	�
<�

�9 "��≥��"
�����≤��
���
�≥�Σ�∈ ()a j 	�����
�

?9 �
�≥��Σ�∈ ()a j 	��9

$�
�%	����

��01
�
�	#�
���	���
�����	�
�	#�����	&
�����999 �2

According to the definitions of a(j) and b(j), it is easy to verify that we can eliminate
from the set of I-moves (i.e. from IM), the following set of moves

() {(,) | () (), { (1), ..., ()}, }

(,) | () (), { (), ..., (1)}, }.

IE x y IM x b j j x y x y

x y IM x a j j y x x y

π = ∈ π ∈ ∈ π + π < ∪

∪ ∈ π ∈ ∈ π π − <

While, from the set of S-moves (i.e. from SM) we can eliminate

() {(,) | () (), { (1), ..., ()}, }

(,) | () (), { (), ..., (1)}, }.

SE x y SM x b j j x y x y

x y SM y a j j x y x y

π = ∈ π ∈ ∈ π + π < ∪

∪ ∈ π ∈ ∈ π π − <

As a consequence of above considerations, in our algorithm TS+C, we will employ the
neighbourhood �(ME, π), where ME = M – E(π) and E(π) = IE(π) ∪ SE(π).

In order to accelerate the convergence of the algorithms to good solutions, we propose
to use the compound moves, introduced by Glover and Laguna (see [6]). A compound
moves consists of several moves that are performed simultaneously in a single iteration of
algorithm. The performances of the compound moves allow us to generate permutations
that differ in various significant ways from those obtained by performing a single move and
to carry the search process to hitherto non-visited regions of the solution space. Further-
more, in our algorithm, the compound moves have the purpose of guiding the search to visit
the more promising areas, where “good solutions” can be found. In local search algorithms,
the use of compound moves can be viewed as a way to apply a mixture of intensification
and diversification strategies in the search process.

In the following we present a method that will be used in our heuristic algorithms to
provide the compound moves. Let

P = {v ∈ ME | F(πv) < F(π)}

be the set of the profitable moves performing of which generates permutation πv “better”
than π. Note that the move v ∈ P can be either I-moves or S-moves.

Two moves v1 = (x1, y1) ∈ P and v2 = (x2, y2) ∈ P are called the independent ones with
respect to π, if each of the positions x1, y1 is separated from each of the positions x2, y2.
More precisely, v1 and v2 are independent if the following Condition is satisfied:

max(x1, y1) < min(x2, y2) or max(x2, y2) < min(x1, y1) (1)

Let IP be a subset of P containing the independent moves of P. This means that for
each pair of moves v1 ∈ IP and v2 ∈ IP, v1 ≠ v2, is satisfied Conditions (1). From the
definition of IP it results that each move v ∈ IP produces permutation πv “better” than π.
Therefore, as a compound move, we took the set IP. The use of this compound move con-
sists in performing all the moves from IP simultaneously, generating a permutation, denoted
as ˆ ,vπ where ˆ .v IP=

34)�
����
	!�*�
"��	+,-��	.�	����"��	%���-���	�)����"�

To simplify, in the further considerations, compound move IP will be denoted alterna-
tively by .̂v Note that the permutation ˆ ,vπ does not belong to �(ME, π), unless ˆ 1.v = The
intuition following from the definition of v̂ suggests that v̂π should be significantly better
than πv generated by the best (single) move ˆ,v v∈ since the total improvement of ˆ()vF π is
obtained by adding all the improvements produced by the individual moves from .̂v It is
a specific property of the considered problem that holds for the independent and profitable
moves and that has not been applied to our problem. It allows the algorithm to achieve very
good solutions in a much shorter time. Therefore, the performance of compound move v̂
guides the search to visit new more promising regions of the solution space where good
solutions can found. Note that if ˆ 0,v = then the compound move can not be used. The
procedure that creates a compound move v̂ is based on a greedy algorithm.

�����������	
����
������
����
��������

In our algorithm we use the cyclic tabu list defined as a finite list (set) T with length
LengthT containing ordered triplets. The list T is a realization of the short-term search me-
mory. If a move v = (x, y) is performed on permutation π, then, a triplet (π(x), y, F(πv)) is
added to T. If the compound move v̂ is performed, then the triplet corresponding to each
move from v̂ is added to the tabu list. Each time before adding a new element to T, we must
remove the oldest one. With respect to a permutation π, a move v = (x, y) ∈ ME is forbidden
i.e. it has tabu status, if there is a triplet (r, s, φ) in T such that π(x) = r, y = s, and F(πv) ≥ φ.

As mentioned above, our algorithm uses a tabu list with dynamic length. This length is
changed, as the current iteration number iter of TS+C increases, using a “pick” that can be
viewed as a specific disturbance (diversification).

This kind of tabu list was employed on those very fast tabu search algorithms proposed
by Grabowski and Wodecki, where it was successfully applied to the classical flow shop
and job shop problems [8, 9]. Here, we extend this component of TS+C in the original form
[8], to the problem considered. In this tabu list, length LengthT is a cyclic function shown in
Figure 1, and defined by the expression:

, if () () (),

, if () () () () ,

LTS W l iter W l h l
LengthT

LTS W l h l iter W l h l H

< ≤ +⎧⎪= ⎨
+ ψ + < ≤ + +⎪⎩

where:
l = 1, 2, ... – the number of the cycle,

 1
() (1) (1)l

s
W l h s l H== − + − ×∑ (here h(0) = 0),

H – the width of the pick equal to ,ψ
h(l) – the interval between the neighbour picks equal to 3×LTS.

If LengthT decreases then a suitable number of the oldest elements of tabu list T is
deleted and the search process is continued. The LTS and ψ are tuning parameters which

are to be chosen experimentally.

!���"	�##��	�
DE��	�	$�	��
	�������
�	���	$�����	%	�
������ 3�

+�� �� 	H������		�
�	��
	

�����������������

TS+C starts from an initial basic permutation π in which the jobs of each T-block are
ordered according to the WSPT rule. This permutation implies the neighbourhood �(ME, π)
that is searched in the following manner. First, the set of unforbidden moves (UF) that do
not have the tabu status, is defined

UME = {v ∈ ME | move v is UF},

and, the compound move v̂ is created according to the method described earlier. If ˆ 0,v =
we then take ˆ : ,v v∗= where v* is the “best” move from UME, i.e. F(πv*) = minv∈UME F(πv).
If the compound move v̂ is selected, then the triplets corresponding to the moves from v̂
are added to the tabu list (see Section Tabu list and tabu status of move for details) and the
permutation v̂π is created. Next, the jobs of each T-block within v̂π are ordered according
to the WSPT rule, and then the resulting permutation becomes the new basic one, and algo-
rithm restarts to next iteration.

If all moves from ME are forbidden (a very rare case), i.e. if UME = 0 , then the oldest
element of tabu list is deleted and the search is repeated until a UME-move is found.

It should be noted that the algorithm TS+C with compound moves is similar to the
classic TS except that at each iteration a compound move v̂ (containing several single
moves) is performed, as opposed to a single move v*.

,��)�	�����
������������

Our algorithm TS+C was tested on the benchmark instances. The results obtained
by our algorithm were then compared with results from the literature. Several heuristic
algorithms exist in the literature to solve the problem stated. So far the best approximation
algorithms for the problem were presented in papers by Crauwels et al. [3], Den Basten

�� ��������	��������	�����	��	�������	 �������	�	��!����

et al. [4], Congram et al. [2] and Grosso et al. [10]. The best speed has been obtained by
Iterated Dynasearch Algorithm (here denoted as IDA) by Congram et al. [2], that uses dy-
namic programming to search a neighbourhood. However, the best results have been pro-
duced by Generalized Pairwise Interchanges Dynasearch, denoted as GPI-DS, by Grosso et
al. [10]. The solution quality achieved by GPI-DS is better than the one of IDA, in about the
same CPU time. In GPI-DS, a dynasearch neighbourhood of IDA has been enhanced by
applying additionally GPI operators and some elimination criteria. Both IDA and GPI-DS
are non-deterministic ones because for each run of algorithms, the starting permutations are
chosen randomly (in the tests of Grosso [10], for GPI-DS, 25 independent runs were per-
formed). It is reported that both GPI-DS and IDA provide better results than the ones pro-
posed by other Authors. Therefore, most comparison of our algorithm TS+C are made with
GPI-DS and IDA, but there are a few made with those TS(P,1) and TS(P,5) of Crauwels et
al. [3], that are currently the best algorithms based on tabu search approach for the problem
considered. The difference between TS(P,1) and TS(P,5) is that if TS(P,1) performs Maxiter
iterations, then TS(P,5), as distinct from TS(P,1), performs Maxiter / 5 iterations, and it runs
5 times. Both TS(P,1) and TS(P,5) are non-deterministic ones because the diversification is
made by randomly choice a permutation (from the neighbourhood) which is an initial solu-
tion in the next iteration.

In order to gain more insight into the performance of the proposed algorithm TS+C, its
behavior was analyzed, similar to in IDA, GPI-DS, TS(P,1) and TS(P,5), on benchmark
problems drawn from the OR-library [14]. The benchmark set contains 375 particularly
hard instances of 3 different sizes, selected from a large number of randomly generated
problems. For each size n = 40, 50, and 100, a sample of 125 instances was provided [14].

Proposed algorithm, at the initial stage was run several times, for small-size instances
generated randomly, in order to find the proper value of tuning parameters LTS and .ψ
These were chosen experimentally as a result of the compromise between the running time
and solution quality and we set LTS = ψ = 20.

For each test instance, we collected the following values:

F A – the cost function found by the algorithm A ∈ {TS+C,
IDA, GPI-DS, TS(P,1), TS(P,5)},

CPU(A) – the computer time of algorithm A (in seconds),
PRD(A) = 100(F A – OPT) / OPT – the percentage relative deviation of the cost func-

tion F A from the optimal (or best known) solution
value OPT.

Then, for each size (group) n, the following measures of the algorithm quality were
calculated:

APRD(A) – the average (for 125 instances) percentage relative deviation of the
cost function, found by algorithm A from the optimal (or best known)
solution value;

MPRD(A) – the maximum (out of 125 instances) percentage relative deviation of
the cost function found by algorithm A from the optimal (or best
known) solution value;

�����	"##��	��DE��	�	$�	���	"�%������	���	$��%��	 	�����&&& ��

NO(A) – the number of optimal (or best known) solution values found by algo-
rithm A out of 125 instances;

()opt
zCPU A – the computer time to find the optimal value by algorithm A out of 125

instances, z ∈ {minimal, average, maximal};
NI(A) – the number of iterations performed for A ∈ {TS+C, TS(P,1), TS(P,5)},

or number of descents (to a local optimum) performed for A ∈
∈{GPI-DS, IDA}.

Table 1 shows some detailed computational results of the proposed algorithm for dif-
ferent numbers (NI) of iterations. Note that for NI=2n2, TS+C finds optimal (or best known)
solution values for all the benchmark instances. For NI = n, this value is 333 with APRD
and MPRD equal to 0.005 and 0.174, respectively. So we can conclude that the convergence
of TS+C is fairly good.

�������

I������	��		
��	
��������	���		�	�	�		
�
	���	�	

�
	���	���
��

The comparison of TS+C with the best currently existing tabu search algorithms
TS(P,1) and TS(P,5) is presented in Table 2. Note that both algorithms TS(P,1) and TS(P,5)
are nondeterministic ones, so it possible that we do not obtain a satisfied solution in single
run of this algorithm, even after performing many iterations, therefore, it is necessary to run
algorithm multiple, starting from randomly choice initial permutations, whereas TS+C is
deterministic one, thus the result is obtained in single run. The results from Table 2 show
that, in terms of PRD and NO values (number of optimal, or best known, solution values
found by algorithms out of 125 instances), TS+C performs better than the existing tabu
search algorithms of TS(P,1) and TS(P,5). Especially, the proposed algorithm is far superior
to the TS(P,1). Inspection of the results reveals that the superiority of TS+C, over TS(P,1)
and TS(P,5) increases as the number of jobs n increases. Note that for n iterations, TS+C
found solutions with the overall average APRD and MPRD values equal to 0.005 and
0.233, respectively, whereas the best of existing tabu search algorithms TS(P,5) found the
respective values equal to 0.025 and 1.660 for n2 iterations. We also observe that, in terms
of the NO values, for n iterations, the TS+C provided comparable value with TS(P,5) for n2

iterations.

NI = n NI = 2n NI = n2 NI = 2n2

n
NO APRD MRPD NO APRD MRPD NO APRD MRPD NO APRD MRPD

40 124 0.002 0.151 125 0.000 0.000 125 0.000 0.000 125 0.000 0.000

50 115 0.005 0.171 117 0.004 0.101 124 0.000 0.029 125 0.000 0.000

100 94 0.007 0.210 105 0.005 0.175 122 0.001 0.162 125 0.000 0.000

All 333 0.005 0.174 347 0.003 0.092 371 0.000 0.064 375 0.000 0.000

�
 �
������	�
����
�	�����	�	��
�����	����������	�
�����

�������

 �!"
�����	�������	#$% �	#$&J�'(
��	#$&J�)(���	*+	,	�	
�

All these results, presented in Table 3, confirm the favorable performance of TS+C in
the terms of CPU times and PRD values as well. This promising conclusion encourage us to
run an additional test in order to evaluate the quality of TS+C under a number of iterations
larger than 2n2. A general purpose was to improve the best known solutions for the n = 100
instances published recently in OR Library. We ran TS+C assuming NI = 20n2 but no better
values were found.

�������

 �!"
�����	�������	�J+-H$	
��	#$%

* Averaged values over 25 runs [10].
GPI-DS on Kayak 800 MHz [10].
TS+C on Celeron 450 MHz.

-��)�����	
��	

In this paper, the problem of scheduling a given jobs on a single machine to minimize
total weighted tardiness of jobs is presented. Some new properties of the problem associat-
ed with the blocks have been presented and discussed. These properties allow us to propose
a new fast local search procedure based on a tabu search approach. In order to decrease the
computational effort for the search, in our algorithms, we propose to use the compound
moves that consist in performing several moves simultaneously in a single iteration of algo-
rithms and guide the search process to more promising areas of the solutions space, where
“good solutions” can be found. It allows the algorithm to achieve very good solutions in
a much shorter time. Also, we propose a tabu list with dynamic length which is changed
cyclically, as the current iteration number of algorithms increases, using the “pick” in order
to avoid trapped at a local optimum.

Algorithm TS+C Algorithm TS(P,1) Algorithm TS(P,5)

n
NO APRD MRPD NO APRD MRPD NO APRD MRPD

40 125 0.00 0.00 115 0.06 6.70 118 0.00 0.33

50 125 0.00 0.00 111 0.01 0.42 113 0.01 0.28

100 125 0.00 0.00 96 0.06 4.78 103 0.04 4.39

All 375 0.00 0.00 332 0.043 3.966 334 0.025 1.66

Algorithm GPI-DS* Algorithm TS+C
n

opt
minCPU opt

aveCPU opt
maxCPU

opt
minCPU opt

aveCPU opt
maxCPU

40 0.001 0.003 0.125 0.001 0.003 0.102

50 0.001 0.010 0.562 0.001 0.009 0.529

100 0.001 0.107 3.907 0.001 0.105 3.881

�����	.����	��DE��	�	$�	���	.�/������	���	$��/��	�	�����000 �

Computational experiments are given and compared with the results yielded by the
best algorithms discussed in the literature. These results show that algorithm proposed pro-
vides better results than in the recent modern heuristics. Nevertheless, some improvements
in our algorithm are possible. For instance, attempts to refine the compound moves should
reflect a further improvement of the computational results. It might be interesting to de-
velop new more sophisticated neighbourhoods, and to combine them in the series and/or
parallel structures, creating new algorithms.

The results obtained encourage us to extend the ideas proposed with different objective
functions or to other sequencing problems.

.���
����

K'L ��!�"��	#$�	��
������	%$�	#������	�$1	#��������������$�����������$��������$��������	�������

�$�	�� ������"��$$���� �����	�����������$	#������
�	I�"���	�M�22)�	 +�����3��	��	4����������	 &-

���������	#���N
�	5��6�����&	��	#��������&

K�L ����
!	I7�	J����	 $*$�	O
�	��	O����	$$8$1	#	������������	������$��������$�������$����	����

���$�	��������"���$���������	������$�����	���������$	+*P9I�$	%�3��
�	��	 �!"3�����	''&'(�

�22��)�:;<

K'L �
3����	Q$($%$�	J����	 $*$�	O
�	#
������6�	8$*$1	%�����
����$�&���������������$��
�	����'��

�$�	��(�����)���$����(����	����
�$�����	��*������$	 +*P9I�$	%�3��
�	��	 �!"3�����	'2&'(�

'==>�	''':')2

K'L H��	�
����	�$�	$�R�)��	#$�	H�����	�$1	+����	�������������%�����
����$�#������$����	�,������

#���������	�����$��
�	����'��$�	��(�����)���$����(����	����*������$	+�1	46�#�������"	8* $

�2'<	&%$#$	�����������$(�22'�	''':')'

K)L H���
��
	 %$%$1	 *�������	��� ��� �������� ���������� ���	�� ���	����� ��	���� �-�����	�� ����"���$

#������	 "
"��$	 �!"3���	 $������	 H�"
��!����	 5��6�����&	 ��	 #��������	 5$(�22'�	 ���"$MM

���$������$���M�����!
��M"�����!
���$"�

K;L ���6��	P$�	8
�3�
	�$1	(����
����$$	7�3���	(�
��!��	J3���������	'==>

K<L ��
������	%$�	J�!"��
	%$1	.�"�����������������������$������������	����"��$�����������"��$����

��������	��	�(
$	%�3��
�	��	���	9"��
����
�	I���
���	$�����&�	''�	�22'�	�'2:��2

K>L ��
������	%$�	#������	�$1	#���������������������$��������$�������$������������	����"��$�������

�����"��$��������	���������	$	 �!"3����	
��	9"��
�����	I���
����	''�	�22'�	'>=':'=2=

K=L ��
������	%$�	#������	�$1	#���������������������$��������$�������$��
����$����������$	+�1	��-

�
��3������	9"��!�)
����	6�
	��!��&	
��	46��3�����	#
�3	$�
���	
��	$�
����	$�
����	& $	I����

�$	(���
��	&4��((�	7�3���	(�
��!��	J3��������	�22)

K'2L ������	($�	H���
	 ����	P$�	#
���	I$1	#	��	$�	������	������$�	���$���$����������	�������$�	�

������"���$���������	������$�����	���������$	9"��
�����	I���
���	8�������	'��	�22'�	;>:<�

K''L 8
����	4$8$1	#�*���������	������#������$������
�-��	��	��/���� ���'�	���0��(�����(����	���$

(��
��	��	H�������	�
���!
�����	'�	'=<<�	''':''�

K'�L 8�����
	%7�	I����&	7
�	($�$Q$�	��3����	J$1	��������������'��$�	��
�$�����	��*�������$	(�-

�
��	��	H�������	�
���!
�����	'�	'=<<�	''':';�

K''L �
��3�	Q$�	9���	$$#$�	$3���6
�	I$$$1	#���	�������������$������������		����	����$��������$����	�

�������$�	��"���$���� �����	�����������$	#������	"
"��	><-'�-��	H�"
��!���	��	�
�
��!����

5��6�����&	��	#�?
�	
�	(3�����	#S	5$('=><

K''L	9I	8���
�&	���"$MM���$!�$��$
�$3�M����$��!�

K')L	I����&	7
�	(Q�$�	8
�����	�$%$�	8�����
	%$7$1	'�	���0�	���������������	��	�����$�	����$����

��	�$	9"��
�����	I���
����	�)�	'=<)�	=2>:=�<

'; #�"�����	��!�"���	%*)��	��
�������	����)&��
�	#������

