PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lasery półprzewodnikowe wciąż pozostają przedmiotem zainteresowań nauki i przemysłu. Cz. 1, Lasery bipolarne : technologia podąża za potrzebami rynku

Autorzy
Identyfikatory
Warianty tytułu
EN
Semiconductor lasers are still of interest to science and industry. Part 1, Bipolar lasers : technology is catching up with the market
Języki publikacji
PL
Abstrakty
PL
Celem artykułu jest wprowadzenie czytelnika w zagadnienie laserów półprzewodnikowych, postrzegane z perspektywy aktualnych kierunków ich rozwoju. Omówiono w nim ważniejsze aspekty technologii laserów dużej mocy, laserów niebieskich i laserów typu VCSEL oraz rynku na te przyrządy. Przedstawiono nowe perspektywy związane z technologią kropek kwantowych. Całość materiału została uzupełniona krótkimi wykładami wyjaśniającymi zasady działania i budowy omawianych laserów.
EN
The aim of the paper is to acquaint the reader with semiconductor lasers looked at in perspective of their current development and further progress. Topics related to high power lasers, blue-violet lasers and VCSELs, including markets for these devices, are discussed. New features associated with quantum dots are also presented. The contents is supplemented by short lectures on devices in question.
Rocznik
Strony
30--42
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Instytut Technologii Elektronowej, Warszawa
Bibliografia
  • 1. Data storage boom prompts fresh growth for laser diodes. Compound Semicond., vol. 10, no 3, 2004, pp. 13-15.
  • 2. Steele R.V.: Review and forecast of the laser markets. Part II: Diode lasers, Laser Focus World. Feb., 2004, pp. 71-82.
  • 3. Perry T.S.: A dark-horse technology - the grating light valve - may join the competition to dethrone the CRT. IEEE Spectrum, April 2004, pp. 27-29.
  • 4. Lewis J.R.: In the eye of the beholder. IEEE Spectrum, May 2004, pp. 16- 20.
  • 5. Williamson R., Kanskar M.: Improved laser design pushes wallplug efficiency to 65%. Compound Semicond., vol. 10, no 6, pp. 37-39, 2004.
  • 6. Opto News: Alfalight project targets 80% efficiency lasers. Compoun Semicond., November 2003, p. 19.
  • 7. Spectra Physics. Photonics Spectra. Sept. 2002, p. 63.
  • 8. Beach R., Benett W.J., Freitas B.L., Mudinger D., Comasky, B.J., Solarz R.W., Emanuel M.A.: Modular Microchannel Cooled Heatsinks for High Average Power Laser Diode Arrays. IEEE J. Quantum Electron., 28, pp. 966-976, 1992.
  • 9. „Funryu” allows 808 nm laser-diode bar to reach 255 W output. Laser Focus World, March 2004, p. 11.
  • 10. Powell P.M.: Laser Diode Manufacurers Turn Up the Power. Photonics Spectra, February 2004, pp. 82-85.
  • 11. Both W., Erbert G., Klehr A., Rimpler A., Stadermann G., Zeimer U.: Catastrophic optical damage in GaAIAs/GaAs laser diodes. IEE Proc., 134, Pt. J., (1987), pp. 95-103.
  • 12. Mawst L.J., Bhattacharya A., Lopez J., Botez D.: 8 W continuous wave front-facet power from broad-waveguide Al-free 980 nm diode lasers. Appl. Phys. Lett., 69, (1996), 1532.
  • 13. Botez D., Conolly J.C.: Nonabsorbing-mirror (NAM) CDH-LOC Diode Lasers. Electron. Lett., 20, (1984), 530.
  • 14. Elman B., Sharfin W.F., Crawford F.D., Rideout W.C., Lacourse J., Lauer R.B.: High Power 980 nm Ridge Waveguide Lasers with Etch-Stop Layer. Electron. Lett., 27, (1991), pp. 2032-2033.
  • 15. Shieh C., Mantz J., Lee H., Ackley D., Engelmann R.: Anomalous dependence of threshold current on stripe width in gain-guided strained-layer InGaAs/GaAs quantum well lasers. Appl. Phys. Lett., vol. 54, no 25, 1989, pp. 2521-2523.
  • 16. Graydon O.: Etched facets set to cut the cost of diode arrays. Compound Semicond. vol. 10, no 9, p. 33-36, 2004.
  • 17. Parke R., Welch D.F., Hardy A., Lang R., Mehuys D., O’Brien S., Dzurko K., Scifres D.: 2.0 W CW, Diffraction-Limited Operation of a Monolithically Integrated Master Oscillator Power Amplifier. Photon. Techn. Lett., 5, 297-300, 1993.
  • 18. Botez D.: High-power monolithic phase-locked arrays of antiguided semiconductor diode lasers. IEE Proc.-J, 139, (1992), pp. 14-23.
  • 19. Mawst L.J., Botez D., Zmudzinski C., Tu C.: 0,3 W CW single-spatial-mode operation from large-core arrow-type diode lasers. Electron. Lett., 28, (1992), pp. 1793-1795.
  • 20. Botez D., Mawst L.J.: Phase-Locked Laser Arrays Revisited, IEEE Circuits and Devices, Nov. 1996, pp. 25-32.
  • 21. Mroziewicz B.: Półprzewodnikowe diody elektroluminescencyjne (LED) Część II. Rewolucja w optoelektronice - LED emitujące światło niebieskie, Elektronizacja, nr 6/2003, s. 1-16.
  • 22. Jones-Bey H.A.: Optical Data Storage, Blue-ray meets blue sky. Laser Focus World, August 2003, pp. 32-35.
  • 23. Hatcher M.: GaN laser diode market to reach $272 mln in 2008. Compound Semicond. April 2004, p. 5.
  • 24. Nakamura S.: Blue lasers meet tough commercial requirements. Photonics Spectra, May 1998, pp. 130-135.
  • 25. Nichia „to mass produce blue lasers" next year, COMPOUNDSEMICONDUCTOR.NET, 7 October 2004.
  • 26. Japanese giants size up blue laser production, COMPOUNDSEMICONDUCTOR.NET, 10 September 2004.
  • 27. Härle V., Lell A., Wagner J.: Violet and Blue Laser Diodes Make Strides, Photonics Spectra, June 2003, pp. 66-70.
  • 28. Nakamura S.: InGaN Multiquantum-Well-Structure Laser Diodes with GaN-AIGaN Modulation-Doped Strained-Layer Superlattices. IEEE J. Sel. Topics in Quantum Electron., vol. 4, no 3., 1998, pp. 483-489.
  • 29. Shatalov M.: Samsung and Toyoda Gosei unveil progress in violet lasers. Compound Semicond., vol. 10, No 5, 2004, pp. 27-29.
  • 30. Balmer R.: Nitride leap ahead at ICNS-5. Compound Semicond., vol. 9, no 7, August 2003, pp. 19-21.
  • 31. Yagi K.: GaN Diode Lasers Expand into the Blue-Violet. Europhotonics, April/May, 2003, pp. 30-31.
  • 32. Toshiba develops 200 mW low-noise violet laser. Compound Semicond., vol. 9, no 9, 2003, p. 19.
  • 33. Amano H., Kito M., Hiramatsu K., Akasaki I.: P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Jpn. J. Appl. Phys., 28, 1989, pp. L 2112-2114.
  • 34. Nakamura S., Mukai T., Senoch M., Iwasa N.: Thermal Annealing Effects on P-Type Mg-Doped GaN Films. Jpn. J. Appl. Phys., vol. 31, 1992, L139-L142.
  • 35. Kato Y., Kitamura S., Hiramatsu K., Sawaki N.: Selective growth of wurzite GaN and AlxGa1-xN on GaN/Sapphire substrates by metalorganic vapor phase epitaxy. J. Crystal Growth, 144, 1994, s.s. 133-140.
  • 36. Nakamura S., Senoch M, Nagahama S., Iwasa N., Yamada T., Matsuchita T., Kiyoku H., Sugitomo Y., Kozaki T., Uemoto H., Sano M., Chocho K.: InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices. Jpn. J. Appl. Phys., 36, 1997, p. L1568.
  • 37. Kuramoto M., Sasaoka C., Hisanaga Y., Kimura A., Yamaguchi A., Sunakawa H., Kuroda N., Nido M., Usui A., Mizuta M.: Room-Temperature Continous-Wave Operation of InGaN Multi-Quantum-Well Laser Diodes Grown on an n-Substrate with a Backside n-Contact. Jpn. J. Appl. Phys., 38, Part 2 (2B), 1999, p. L184-L186.
  • 38. Beresford R.: Nitride Laser Diodes on the Threshold. Compound Semicond. 5, no 1, 1999, pp. 14-17.
  • 39. Nichia Surpasses 10 000 Hours, Announces Blue Laser Prototyping Plans. Compound Semicond., 3, no 6, 1997, pp. 4-6.
  • 40. Fujitsu Reports CW Blue Laser on SiC. Compound Semicond., 5 (1), 1999, s. 16.
  • 41. Geppert L.: The Great Gallium Nitride Gamble. IEEE Spectrum, January 2004, pp. 44-54.
  • 42. Stevenson R.: GaN substrates offer high performance at a price. Compound Semicond., July 2004, pp. 20-21.
  • 43. Perlin P., Leszczyński M., Prystawko P. i inni: Low dislocation density, high power InGaN laser diodes. MRS Internet J. - Nitride Semicond. Res., vol. 9, March 2004.
  • 44. Purvis G.: MBE springs blue-violet laser diodes. III-Vs Review, vol. 17, no 2, 2004, p. 23.
  • 45. Mooradian A., Moran B., Waltonsmith R.: VCSELs Expand into New Applications. Photonics Spectra, January 2004, pp. 88-90.
  • 46. Steinle G., Mederer F., Kicherer M., Michalzik R., Kristen G., Egorov A.Y., Riechert H., Wolf H.D., Ebeling K.J.: Data transmission up to 10 Gbit/s with 1,3/μm wavelength InGaAsN VCSELs. Electron. Lett. vol. 37, No 10, pp. 632-634, May 10, 2001.
  • 47. Hatcher M.: Guarded optimism reigns at fiberoptic industrys key event. Compound Semicond., vol. 10, No 3, April 2004, pp. 16-19.
  • 48. Sian H.: Redesigned VCSELs take a leap in power. Opto & Laser Europe. April 2004, pp. 17-19.
  • 49. Tatum J.: Packaging flexibility propels VCSELs beyond telecommunications. Laser Focus World, April 2000, pp. 131-136.
  • 50. Asada M., Miayamoto Y., Suematsu Y.: Gain and the Threshold of Three-Dimensional Quantum-Box Lasers. IEEE J. Quantum Electron., vol. QE-22, No. 9, p. 1015, 1986.
  • 51. Burgess D. S.: Let’s Get Small. Photonics Spectra, July 2001, pp. 102-106.
  • 52. Lednetsov N.N., Bimberg D., Ustinov V.M. Alferov Zh.I, Lott J.A.: Self organized InGaAs quantum dots for advanced applications in optoelectronics. Jpn. J. Appl. Phys., vol. 41, No 2B, pp. 949-952, 2002.
  • 53. Ledentsov N.: Quantum dot heterostructures progress to commercialization. Compound Semicond., April 2004, pp. 21-23.
  • 54. Reithmajer J. P. Forchel A.: Semiconductor Quantum Dots. IEEE Circuits & Devices magazine, Nov. 2003, pp. 24-29.
  • 55. Telford M.: QD lasers go to market. III-Vs, vol. 17, No 3, April 2004, pp. 2831.
  • 56. NEC's blue laser hits 300 mW ouput power. Compound. Semicond. Net, November 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH1-0001-0080
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.