Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Particle size distribution (PSD) and concentration of mineral-suspended sediment released from melting glaciers are important factors affecting the local marine ecosystem, e.g. affecting the light availability in water columns, thus changing underwater light climate for photosynthetic organisms. We examined the characteristics of various samples of natural mineral assemblages suspended in different glacial bays in Hornsund and Kongsfjord at Spitsbergen. The concentrations of the total mass of particles (TSM) in suspended sediment as well as particular organic matter (POM) and particular inorganic matter mass (PIM) together with mineralogical composition and particular size distribution (PSD) were determined. In this study, we investigated the PSD properties and variability in the front of different tidewater glaciers based, laser diffractometer measurements (LISST-100x), and XRD – techniques to obtain the mineralogical composition of the particles. The sampled sites are under the strong influence of freshwater discharge from the glacier. At each station, inorganic particulate matter contributed up to 98% to total suspended matter with the particle concentration of the particle reaches up to 111 mg/l with mean surface PSD slopes ranging from 3.24 to 3.85. The result provides valuable baseline information on the observed range of variability of the size of suspended particles due to glacial runoff and the presence of particles of different mineral origin in the glacial bays.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
239--249
Opis fizyczny
Bibliogr. 46 poz., map., rys., tab., wykr.
Twórcy
autor
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
- 1. Anderson, S. P., Drever, J. I., Frost, C. D., Holden, P., 2000. Chemical weathering in the foreland of a retreating glacier. Geochimica at Cosmochimica Acta 64 (7), 1173-1189. https://doi.org/10.1016/S0016-7037(99)00358-0
- 2. Anesio, A.M., Laybourn-Parry, J., 2012. Glaciers and ice sheets as a biome. Trends Ecol. Evol. 27, 219-225. https://doi.org/10.1016/j.tree.2011.09.012
- 3. Arrigo, K.R., van Dijken, G.L., Castelao, R.M., Luo, H., Rennermalm, ˚A.K., Tedesco, M., Mote, T.L., Oliver, H., Yager, P.L., 2017. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett. 44. https://doi.org/10.1002/2017GL073583
- 4. Babin, M., Stramski, D., 2004. Variations in the mass-specific absorption coefficient of mineral particles suspended in water. Limnol. Oceanogr. 49, 756-767. https://doi.org/10.4319/lo.2004.49.3.0756
- 5. Bhatia, M.P., Kujawinski, E.B., Das, S.B., Breier, C.F., Henderson, P.B., Charette, M.A., 2013. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 6, 274-278. https://doi.org/10.1038/ngeo1746
- 6. Błaszczyk, M., Jania, J.A., Hagen, J.O., 2009. Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes. Pol. Polar Res. 30, 85-142.
- 7. Braeckman, U., Pasotti, F., Hoffmann, R., Vázquez, S., Wulff, A., Schloss, I.R., Falk, U., Deregibus, D., Lefaible, N., Torstensson, A., Al-handal, A., Wenzhöfer, F., Vanreusel, A., 2021. Glacial melt disturbance shifts community metabolism of an Antarctic seafloor ecosystem from net autotrophy to heterotrophy. Commun. Biol. 4, 1-11. https://doi.org/10.1038/s42003-021-01673-6
- 8. Bukowska-Jania, E., 2007. The role of glacier system in migration of calcium carbonate on Svalbard. Pol. Polar Res. 28, 137-155.
- 9. Clark, G.F., Stark, J.S., Palmer, A.S., Riddle, M.J., Johnston, E.L., 2017. The roles of sea-ice, light and sedimentation in structuring shallow antarctic benthic communities. PLoS One 12, 1-20. https://doi.org/10.1371/journal.pone.0168391
- 10. Dallmann, W.K., 2015. Geoscience Atlas of Svalbard. Norwegian Polar Istitute, Tromso Report 148.
- 11. Deja, K., Ormańczyk, M., Dragańska-Deja, K., 2019. Plankton or benthos: where krill belongs in Spitsbergen fjords? (Svalbard Archipelago, Arctic). Polar Biol 42, 1415-1430. https://doi.org/10.1007/s00300-019-02524-1
- 12. Deja, K., Węsławski, J.M., Borszcz, T., Włodarska-Kowalczuk, M., Kukliński, P., Bałazy, P., Kwiatkowska, P., 2016. Recent distribution of Echinodermata species in Spitsbergen coastal waters. Pol. Polar Res. 37, 511-526. https://doi.org/10.1515/popore-2016-0027
- 13. Ericson, Y., Falck, E., Chierici, M., Fransson, A., Kristiansen, S., 2019. Marine CO2 system variability in a high arctic tidewaterglacier fjord system, Tempelfjorden, Svalbard. Cont. Shelf Res. 181, 1-13. https://doi.org/10.1016/j.csr.2019.04.013
- 14. Ericson, Y., Falck, E., Chierici, M., Fransson, A., Kristiansen, S., Platt, S.M., Hermansen, O., Myhre, C.L., 2018. Temporal Variability in Surface Water pCO2 in Adventfjorden (West Spitsbergen) With Emphasis on Physical and Biogeochemical Drivers. J. Geophys. Res. Ocean. 123, 4888-4905. https://doi.org/10.1029/2018JC014073
- 15. Fairchild, I.J., Bradby, L., Spiro, B., 1994. Reactive carbonate in glacial systems: a preliminary synthesis of its creation, dissolution and reincarnation. In: Domack, E.W., Young, G.M., Fairchild, I., Miller, J.M.G., Deynoux, M., Eyles, N. (Eds.),Earth’s Glacial Record, World and Regional Geology. Cambridge University Press, Cambridge, 176-192. https://doi.org/10.1017/CBO9780511628900.014
- 16. Gerringa, L.J.A., Alderkamp, A.C., Laan, P., Thuróczy, C.E., De Baar, H.J.W., Mills, M.M., van Dijken, G.L., Haren, H.van, Arrigo, K.R., 2012. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry. Deep. Res. Part II Top. Stud. Oceanogr. 71-76, 16-31. https://doi.org/10.1016/j.dsr2.2012.03.007
- 17. Gorlich, K., 1987. Glacimarine sedimentation of muds in Hornsund Fjord, Spitsbergen. Deep Sea Res. Part B. Oceanogr. Lit. Rev. 34, 1046. https://doi.org/10.1016/0198-0254(87)95941-3
- 18. Halbach, L., Vihtakari, M., Duarte, P., Everett, A., Granskog, M.A., Hop, H., Kauko, H.M., Kristiansen, S., Myhre, P.I., Pavlov, A.K., Pramanik, A., Tatarek, A., Torsvik, T., Wiktor, J.M., Wold, A., Wulff, A., Steen, H., Assmy, P., 2019. Tidewater Glaciers and Bedrock Characteristics Control the Phytoplankton Growth Environment in a Fjord in the. Arctic. Front. Mar. Sci. 6. https://doi.org/10.3389/fmars.2019.00254
- 19. Hallet, B., Hunter, L., Bogen, J., 1996. Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Glob. Planet. Change 12, 213-235. https://doi.org/10.1029/2004JF000189
- 20. Hawkings, J.R., Benning, L.G., Raiswell, R., Kaulich, B., Araki, T., Abyaneh, M., Stockdale, A., Koch-Müller, M., Wadham, J.L., Tranter, M., 2018. Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92-101. https://doi.org/10.1016/j.epsl.2018.04.022
- 21. Hawkings, J.R., Wadham, J.L., Tranter, M., Raiswell, R., Benning, L.G., Statham, P.J., Tedstone, A., Nienow, P., Lee, K., Telling, J., 2014. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5. https://doi.org/10.1038/ncomms4929
- 22. Hood, E., Battin, T.J., Fellman, J., O’Neel, S., Spencer, R.G.M., 2015. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91-96. https://doi.org/10.1038/ngeo2331
- 23. Hood, E., Fellman, J., Spencer, R.G.M., Hernes, P.J., Edwards, R., Amore, D.D., Scott, D., D’Amore, D., Scott, D., 2009. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044-1047. https://doi.org/10.1038/nature08580
- 24. Husum, K., Howe, J.A., Baltzer, A., Forwick, M., Jensen, M., Jernas, P., Korsun, S., Miettinen, A., Mohan, R., Morigi, C., Myhre, P.I., Prins, M.A., Skirbekk, K., Sternal, B., Boos, M., Dijkstra, N., Troelstra, S., 2019. The marine sedimentary environments of Kongsfjorden, Svalbard: an archive of polar environmental change. Polar Res. 38, 1-16. https://doi.org/10.33265/polar.v38.3380
- 25. Konik, M., Darecki, M., Pavlov, A. K., Sagan, S., Kowalczuk, P., 2021. Darkening of the Svalbard Fjords Water Observed With Satellite Ocean olor Imagery in 1997-2019. Front. Mar. Sci. 8, 699318. https://doi.org/10.3389/fmars.2021.699318
- 26. Martini, I.P., Brookfield, M.E., Sadura, S., 2001. Priciples of glacial geomorphology and gelogy. Printice Hall, Upper Saddle River, New Jersey. McKinney, W.van der Walt, S., Millman, J. (Eds.), 2010. Data structures for statistical computing in Python TX(2010), 56-61. https://doi.org/10.25080/Majora-92bf1922-00a
- 27. Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd, P.W., Galbraith, E.D., Geider, R.J., Guieu, C., Jaccard, S.L., Jickells, T.D., La Roche, J., Lenton, T.M., Mahowald, N.M., Marañón, E., Marinov, I., Moore, J.K., Nakatsuka, T., Oschlies, A., Saito, M.A., Thingstad, T.F., Tsuda, A., Ulloa, O., 2013. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701-710. https://doi.org/10.1038/ngeo1765
- 28. Moskalik, M., Ćwiąkała, J., Szczuciński, W., Dominiczak, A., Głowacki, O., Wojtysiak, K., Zagórski, P., 2018. Spatiotemporal changes in the concentration and composition of suspended particulate matter in front of Hansbreen, a tidewater glacier in Svalbard. Oceanologia 60, 446-463. https://doi.org/10.1016/j.oceano.2018.03.001
- 29. Overland, J., Dunlea, E., Box, J.E., Corell, R., Forsius, M., Kattsov, V., Olsen, M.S., Pawlak, J., Reiersen, L.O., Wang, M., 2019. The urgency of Arctic change. Polar Sci 21, 6-13. https://doi.org/10.1016/j.polar.2018.11.008
- 30. Sagan, S., Darecki, M., 2018. Inherent optical properties and particulate matter distribution in summer season in waters of Hornsund and Kongsfjordened, Spitsbergen. Oceanologia 60 (1), 65-75. https://doi.org/10.1016/j.oceano.2017.07.006
- 31. Stemmann, L., Boss, E., 2012. Plankton and particle size and packaging: From determining optical properties to driving the biological pump. Ann. Rev. Mar. Sci. 4, 263-290. https://doi.org/10.1146/annurev-marine-120710-100853
- 32. Sunda, W.G., 2012. Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front. Microbiol. 3, 1-22. https://doi.org/10.3389/fmicb.2012.00204
- 33. Svendsen, H., Beszczynska-møller, A., Hagen, J.O., Lefauconnier, B., Tverberg, V., Gerland, S., Ørbæk, J.B., Bischof, K., Papucci, C., Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J., Dallmann, W., 2002. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21, 133-166. https://doi.org/10.3402/polar.v21i1.6479
- 34. Szczuciński, W., Zajączkowski, M., Scholten, J., 2009. Sediment accumulation rates in subpolar fjords — Impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard. Estuar. Coast. Shelf Sci. 85, 345-356. https://doi.org/10.1016/j.ecss.2009.08.021
- 35. Szeligowska, M., Trudnowska, E., Boehnke, R., Błachowiak-Samołyk, K., 2022. Dark plumes of glacial meltwater affect vertical distribution of zooplankton in the. Arctic. Sci. Rep. 12, 1-16. https://doi.org/10.1038/s41598-022-22475-8
- 36. Szeligowska, M., Trudnowska, E., Boehnke, R., Dąbrowska, A.M., Dragańska-Deja, K., Deja, K., Darecki, M., Błachowiak-Samołyk, K., 2021. The interplay between plankton and particles in the Isfjorden waters influenced by marine- and land-terminating glaciers. Sci. Total Environ. 780. https://doi.org/10.1016/j.scitotenv.2021.146491
- 37. Telling, J., Boyd, E.S., Bone, N., Jones, E.L., Tranter, M., Macfarlane, J.W., Martin, P.G., Wadham, J.L., Lamarche-Gagnon, G., Skidmore, M.L., Hamilton, T.L., Hill, E., Jackson, M., Hodgson, D.A., 2015. Rock comminution as a source of hydrogen for subglacial ecosystems. Nat. Geosci. 8, 851-855. https://doi.org/10.1038/ngeo2533
- 38. Trudnowska, E., Dąbrowska, A.M., Boehnke, R., Zajączkowski, M., Błachowkiak-Samołyk, K., 2020. Particles, protists, and zoo-plankton in glacier-influenced coastal Svalbard waters. Estuar. Coast. Shelf Sci. 242 (2020), 106842. https://doi.org/10.1016/j.ecss.2020.106842
- 39. Trudnowska, E., Lacour, L., Ardyna, M., Rogge, A., Irisson, J.O., Waite, A.M., Babin, M., Stemmann, L., 2021. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export. Nat. Commun. 12, 1-13. https://doi.org/10.1038/s41467-021-22994-4
- 40. Urbanski, J.A., Stempniewicz, L., Węsławski, J.M., Dragańska-Deja, K., Wochna, A., Goc, M., Iliszko, L., 2017. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Sci. Rep. 7, 43999.
- 41. Wawrzyniak, T., Osuch, M., 2019. Daily precipitation (1979—2018) at the Arctic meteorological station Hornsund, Spitsbergen, https://doi.org/10.1594/PANGAEA.909070, [in:] Wawrzyniak, T, Osuch, M., A consistent High Arctic climatological dataset (1979—2018) of the Polish Polar Sation Hornsund (SW Spitsbergen, Svalbard). PANGAEA. https://doi.org/10.1594/PANGAEA.909042
- 42. Węsławski, J.M., Koszteyn, J., Zajączkowski, M., Wiktor, J., Kwaśniewski, S., 1995. Fresh water in Svalbard fjord ecosystems. In: Ecology of Fjords and Coastal Waters. Elsevier, 229-241.
- 43. Woźniak, S.B., Darecki, M., Zabłocka, M., Burska, D., Dera, J., 2016. New simple statistical formulas for estimating Surface concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) from remote-sensing reflectance in the southern Baltic Sea. Oceanologia 58 (3), 161-175. https://doi.org/10.1016/j.oceano.2016.03.002
- 44. Woźniak, S.B., Stramski, D., 2004. Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms. Appl. Opt. 43, 3489-3503. https://doi.org/10.1364/AO.43.003489
- 45. Woźniak, S.B., Stramski, D., Stramska, M., Reynolds, R.A., Wright, V.M., Miksic, E.Y., Cichocka, M., Cieplak, A.M., 2010. Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California. J. Geophys. Res. Ocean. 115, 1-19. https://doi.org/10.1029/2009JC005554
- 46. Zajączkowski, M., 2008. Sediment supply and fluxes in glacial and outwash fjords, Kongsfjorden and Adventfjorden, Svalbard. Pol. Polar Res. 29, 59-72.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-affe1c0f-e3d6-4a89-ad20-244d4435c15f