PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perturbation solutions for magnetohydrodynamics (MHD) flow of in a non-Newtonian fluid between concentric cylinders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The steady-state magnetohydrodynamics (MHD) flow of a third-grade fluid with a variable viscosity parameter between concentric cylinders (annular pipe) with heat transfer is examined. The temperature of annular pipes is assumed to be higher than the temperature of the fluid. Three types of viscosity models were used, i.e., the constant viscosity model, space dependent viscosity model and the Reynolds viscosity model which is dependent on temperature in an exponential manner. Approximate analytical solutions are presented by using the perturbation technique. The variation of velocity and temperature profile in the fluid is analytically calculated. In addition, equations of motion are solved numerically. The numerical solutions obtained are compared with analytical solutions. Thus, the validity intervals of the analytical solutions are determined.
Rocznik
Strony
199--211
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Technology Faculty Afyon Kocatepe University 03200 Afyonkarahisar, TURKEY
autor
  • Department of Mechanical Engineering, Technology Faculty Afyon Kocatepe University 03200 Afyonkarahisar, TURKEY
Bibliografia
  • [1] Yürüsoy M. and Pakdemirli M. (1999): Exact solutions of boundary layer equations of a special non-Newtonian fluid over a stretching sheet. Mechanics Research Communications, vol.26, No.2, pp.171-175.
  • [2] Pakdemirli M. (1994): Conventional and multiple deck boundary layer approach to second and third grade fluids. Int. J. Engng Sci., vol.32, 141.
  • [3] Hayat T. and Kara A.H. (2006): Couette flow of a third-grade fluid with variable magnetic field. Mathematical and Computer Modelling, vol.43, pp.132-137.
  • [4] Hayat T., Shahzad F. and Ayub M. (2007): Analytical solution for the steady flow of the third grade fluid in a porous half space. Applied Mathematical Modelling, vol.31, pp.2424-2432.
  • [5] Pakdemirli M., Hayat T., Yürüsoy M., Abbasbandy S. and Asghar S. (2011): Perturbation analysis of a modified second grade fluid over a porous plate. Nonlinear Analysis: Real World Applications, vol.12, pp.1774-785.
  • [6] Pakdemirli M., Aksoy Y., Yürüsoy M. and Khalique C.M. (2008): Symmetries of boundary layer equations of power-law fluids of second grade. Acta Mech Sin., vol.24, pp.661-670.
  • [7] Ali J. Chamkha (1997): Similarity solution for thermal boundary layer on a stretched surface of a non-Newtonian fluid. Int. Comm. Heat Mass Transfer, vol.24, No.5, pp.643-652.
  • [8] Kecebas A. and Yürüsoy M. (2006): Similarity solutions of unsteady boundary layer equations of a special third grade fluid. International Journal of Engineering Science, vol.44, pp.721-729.
  • [9] Massoudi M. and Christie I. (1995): Effects of variable viscosity and viscous dissipation on the flow of a thirdgrade fluid in a pipe. Int. J. Non-Linear Mech., vol.30, pp.687-699.
  • [10] Yürüsoy M. and Pakdemirli M. (2002): Approximate analytical solutions for the flow of a third-grade fluid in a pipe. International Journal of Non-Linear Mechanics, vol.37, pp.187-195.
  • [11] Ellahi R. and Riaz A. (2010): Analytical solutions for MHD flow in a third-grade fluid with variable viscosity. Mathematical and Computer Modelling, vol.52, pp.1783-1793.
  • [12] Akinshilo A.T. and Olaye O.: On the analysis of the Erying Powell model based fluid flow in a pipe with temperature dependent viscosity and internal heat generation. Journal of King Saud University – Engineering Sciences, (to be published).
  • [13] Jayeoba O.J. and Okoya S.S. (2012): Approximate analytical solutions for pipe flow of a third grade fluid with variable models of viscosities and heat generation/ absorption. Journal of the Nigerian Mathematical Society, vol.31, pp.207-227.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-affcc40b-a6b6-4fb9-9a7d-957db156e3ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.