PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porównanie powłok HA otrzymanych w metodzie hydrotermalnej z roztworu zawierającego EDTA-Ca2+-PO43-lub roztworu Hanka na czystym Ti i Ti implantowanym jonami Ca

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Comparison of HA coatings obtained by hydrothermal method using EDTA-Ca2+-PO43-solution or Hank’s solution on pure Ti and on Ti implanted with Ca ions
Języki publikacji
PL EN
Abstrakty
PL
W celu otrzymania biozgodnej i bioaktywnej warstwy, która poprawi integrację protezy stawu biodrowego z kością, przy użyciu metody hydrotermalnej formowano hydroksyapatyt Ca10(PO4)6(OH)2, HA na podłożach z czystego tytanu oraz tytanu implantowanego jonami Ca. Do syntezy HA użyto dwóch różnych roztworów: jednego zawierającego EDTA, jony wapnia i fosforu oraz drugiego, którym był roztwór Hanka, którego skład i stężenie soli są podobne do składu i stężenia soli osocza krwi ludzkiej. Budowę cząsteczkową tak otrzymanych warstw określono przy użyciu mikrospektroskopii ramanowskiej.W artykule dyskutowana jest efektywność formowania HA w tych roztworach przy użyciu metody hydrotermalnej i wpływ stanu podłoża na procesy osadzania HA.
EN
In order to obtain a biocompatible and bioactive coating that improves hip joint endoprosthesis integration with bone, hydroxyapatite Ca10(PO4)6(OH)2, HA, was formed on pure titanium and Ca ions implanted titanium substrates using hydrothermal method. To synthesize HA two different solutions were used: one containing EDTA, calcium and phosphorus ions, and the other which was Hank’s solution whose salt composition is similar to the human blood plasma. The molecular composition of as deposited coatings was investigated by means of Raman micro-spectroscopy. The effectiveness of the solutions in HA forming by the hydrothermal method and the influence of the substrate condition are discussed.
Rocznik
Strony
24--29
Opis fizyczny
Bibliogr. 42 poz., tab., wykr.
Twórcy
autor
  • Instytut Fizyki Jądrowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Polska
autor
  • Instytut Fizyki Jądrowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Polska
  • Instytut Fizyki Jądrowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Polska
autor
  • Instytut Fizyki Jądrowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Polska
Bibliografia
  • [1] Zhang Y., Fu T., Han Y., Wang Q., Zhao Y., Xu K.: In vitro and n vivo tests of hydrothermally synthesised hydroxyapatite coating. Biomolecular Engineering 19 (2002) 57-61.
  • [2] Chang C., Huang J., Xia J., Ding C.: Study on crystallization kinetics of plasma sprayed hydroxyapatite coating. Ceramics International 25 (1999) 479-483.
  • [3] Sato M., Slamovich E., Webster T.: Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings. Biomaterials 26 (2005) 1349-1357.
  • [4] Hamada K., Kon M., Hanawa T., Yokoyama K., Miyamoto Y., Asaoka K.: Hydrothermal modification of titanium surface in calcium solutions. Biomaterials 23 (2002) 2265-2272.
  • [5] Greenspan D.C.: Bioactive ceramic implant materials. Current Opinion in Solid State and Materials Science 4 (1999) 389-393.
  • [6] Ducheyne P., Qiu Q.: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20 (1999) 2287-2303.
  • [7] Ozeki K., Aoki H., Fukui Y.: Effect of pH crystallization of sputtered hydroxyapatite film under hydrothermal conditions at low temperature. Journal of Material Science 40 (2005) 2837-2842.
  • [8] Choi J.-M., Kim H.-E., Lee I.-S.: Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti based metal substrate. Biomaterials 21 (2000) 469-473.
  • [9] Huang Y., Qu Y., Yang B., Li W., Zhang B., Zhang X.: In vivo biological responses of plasma sprayed hydroxyapatite coatings with an electric polarized treatment in alkaline solution. Materials Science and Engineering C 29 (2009) 2411-2416.
  • [10] d’Haese R., Pawlowski L., Bigan M., Jaworski R., Martel M.: Phase evolution of hydroxyapatite coatings suspension plasma sprayed using variable parameters in simulated body fluid. Surface and Coatings Technology 204 (2010) 1236-1246.
  • [11] Bai X., Sandukas S., Appleford M.R., Ong J.L., Rabiei A.: Deposition and investigation of functionally graded calcium phosphate coatings on titanium. Acta Biomaterialia 5 (2009) 3563-3573.
  • [12] Chen X-B, Li Y-C., Du Plessis J., Hodgson P.D., Wen C.: Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomaterialia 5 (2009) 1808-1820.
  • [13] Ioku K., Kawachi G., Sasaki S., Fujimori H., Goto S.: Hydrothermal preparation of tailored hydroxyapatite. Journal of Materials Science 41 (2006) 1341-1344.
  • [14] Liu F., Song Y., Wang F., Shimizu T., Igarashi K., Zhao L.: Formation characterization of hydroxyapatite on titanium by microarc oxidation and hydrothermal treatment. Journal of Bioscience and Bioengineering 100 (2005) 100-104.
  • [15] Liu F., Wang F., Shimizu T., Igarashi K., Zhao L.: Formation of hydroxyapatite on Ti-6Al-4V alloy by microarc oxidation and hydrothermal treatment. Surface and Coatings Technology 199 (2005) 220-224.
  • [16] Liu F., Wang F., Shimizu T., Igarashi K., Zhao L.: Hydroxyapatite formation on oxide films containing Ca and P by hydrothermal treatment. Ceramics International 32 (2006) 527-531.
  • [17] Huang P., Xu K., Han Y.: Hybrid process of microarc oxidation and hydrothermal treatment of titanium implant. Journal of Porous Materials 11 (2004) 41-45.
  • [18] Byrappa K., Adschiri T.: Hydrothermal technology for nanotechnology. Progress in Crystal Growth and Characterization of Materials 53 (2007) 117-166.
  • [19] Najdoski M.Z., Majhi P., Grozdanov I.S.: A simple chemical method for preparation of hydroxyapatite coatings on Ti6Al4 substrate. Journal of Materials Science: Materials in Medicine 12 (2001) 479-483.
  • [20] Fujishiro Y., Fujimoto A., Sato T., Okuwaki A.: Coating of hydroxyapatite on titanium plates using thermal dissociation of calcium-EDTA chelate complex in phosphate solutions under hydrothermal conditions. Journal of Colloid and Interface Science 173 (1995) 119-127.
  • [21] Fujishiro Y., Nishino M., Sugimori A., Okuwaki A., Sato T.: Coating of hydroxyapatite on various substrates via hydrothermal reactions of Ca(edta)2- and phosphate. Journal of Materials Science: Materials in Medicine 12 (2001) 333-337.
  • [22] Calixto de Andrade M., Tavares Filgueiras M., Ogasawara T.: Hydrothermal nucleation of hydroxyapatite on titanium surface. Journal of the European Ceramic Society 22 (2002) 505-510.
  • [23] Cui F.Z., Luo Z.S., Feng Q.L.: Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition. Journal of Materials Science: Materials in Medicine 8 (1997) 403-405.
  • [24] Yoshinari M., Ohtsuka Y., Derand T.: Thin hydroxyapatite coating produced by the ion beam dynamic mixing method. Biomaterials 15 (1994) 529-535.
  • [25] Cleries L., Fernandez-Pradas J.M., Sardin G., Morenza J.L.: Application of dissolution experiments to characterize the structure of pulsed laser-deposited calcium phosphate coatings. Biomaterials 20 (1999) 1401-1405.
  • [26] Oliveira G.M., Ferraz M.P., Gonzalez P.G., Serra J., Leon B., Perez-Amor M., Monteiro F.: PLD bioactive ceramic films: the influence of CaO-P2O5 glass additions to hydroxyapatite on the proliferation and morphology of osteoblastic like-cells. Journal of Materials Science: Materials in Medicine 19 (2008) 1775-1785.
  • [27] Cleries L., Martinez E., Fernandez-Pradas J.M., Sardin G., Esteve J., Morenza J.L.: Mechanical properties of calcium phosphate coatings deposited by laser ablation. Biomaterials 21 (2000) 967-971.
  • [28] Hu J., Russell J.J., Ben-Nissan B.: Production and analysis of hydroxyapatite from Australian corals via hydrothermal process. Journal of Materials Science Letters 20 (2001) 85-87.
  • [29] Pham M. T., Reuther H., Matz W., Mueller R., Steiner G., Oswald S., Zyganov I.: Surface induced reactivity for titanium by ion implantation. Journal of Marerials Science: Materials in Medicine 11 (2000) 383-391.
  • [30] Krupa D., Baszkiewicz J., Kozubowski J. A., Barcz A., Sobczak J. W., Biliński A., Lewandowska-Szumieł M., Rajchel B.: Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials 22 (2001) 2139-2151.
  • [31] Pecheva E. V., Pramatarova L. D., Maitz M. F., Pham M. T., Kondyuirin A. V.: Kinetics of hydroxyapatite deposition on solid substrates modified by sequential implantation of Ca and P ions Part I. FTIR and Raman spectroscopy study. Applied Surface Science 235 (2004) 176-181.
  • [32] Raikar G., Geregory J., Ong J., Lucas L., Lemons J., Kawakara D., Nakamura M.: Surface characterization of titanium implants. Journal of Vacuum Science and Technology A13 (1995) 2633-2637.
  • [33] Aminzadeh A.: Fluorescence bands in the FT-Raman spectra of some calcium minerals. Spectrochimica Acta Part A 53 (1997) 693-697.
  • [34] Cusco R., Guitian F., de Aza S., Artus L.: Differentiation between hydroxyapatite and β-tricalcium phosphate by means of μ-Raman spectroscopy. Journal of the European Ceramic Society 18 (1998) 1301-1305.
  • [35] Penel G., Leroy G., Rey C., Sombret B., Huvenne J.P., Bres E.: Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders. Journal of Materials Science: Materials in Medicine 8 (1997) 271-276.
  • [36] Shimoyama M., Ninomiya T., Ozaki Y.: Nondestructive discrimination of ivories and prediction of their specific gravity by Fourier-transform Raman spectroscopy and chemometrics. Analyst 128 (2003) 950-953.
  • [37] de Mul F.F.M., Hottenhuis M.H.J., Bouter P., Greve J., Arends J., ten Bosch J.J.: Micro-Raman line broadening in synthetic carbonated apatite. Journal of Dental Research 65 (1986) 437-440.
  • [38] Li H., Ng B.S., Khor K.A., Cheang P., Clyne T.W.: Raman spectroscopy determination of phases within thermal sprayed hydroxyapatite splats and subsequent in vitro dissolution examination. Acta Materialia 52 (2004) 445-453.
  • [39] Silva C.C., Sombra A.S.B.: Raman spectroscopy measurements of hydroxyapatite obtained by mechanical alloying. Journal of Physics and Chemistry of Solids 65 (2004) 1031-1033.
  • [40] Penel G., Delfosse C., Descamps M., Leroy G.: Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36 (2005) 893-901.
  • [41] LeGeros R.Z., Trautz O.R., LeGeros J.P., Klein E., Shirra W.P.: Apatite Crystallites: Effects of Carbonate on Morphology. Science 155 (1967) 1409-1411.
  • [42] Yao F., LeGeros J.P., LeGeros R.Z.: Simultaneous incorporation of carbonate and fluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties. Acta Biomaterialia 5 (2009) 2169-2177.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aff746e3-e15b-40cf-8251-416e5c88867f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.