PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Cycle Fatigue Performance of Hollow-Extruded 6005A-T6 Aluminum Alloy Characterized by a Layered Microstructure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sound joint of hollow-extruded 6005A-T6 aluminum alloy was achieved by friction stir welding and its high cycle fatigue performance was mainly investigated. As a result, the joint fatigue limit reaches 128.1 MPa which is 55% of the joint tensile strength. The fatigue fracture mainly occurs at the boundary between the stir zone and thermo-mechanically affected zone due to the large difference in the grain size. This difference is caused by the layered microstructure of the base material. The shell pattern with parallel arcs is the typical morphology in the fracture surface and the distance between arcs is increased with the increase of stress level. The specimen with the fracture located in the stir zone possesses a relatively low fatigue life.
Twórcy
autor
  • Shenyang Aerospace University, School of Aerospace Engineering, Shenyang, China
autor
  • Shenyang Aerospace University, School of Aerospace Engineering, Shenyang, China
autor
  • CRRC Sifang Co., Ltd, Qingdao 266111, China
autor
  • CRRC Sifang Co., Ltd, Qingdao 266111, China
autor
  • CRRC Sifang Co., Ltd, Qingdao 266111, China
autor
  • Shenyang Aerospace University, School of Aerospace Engineering, Shenyang, China
Bibliografia
  • [1] W. F. Xu, H. J. Liu, D. L. Chen, G. H. Luan, Int. J. Manuf. Technol. 74 (1-4), 209-218 (2014).
  • [2] K. Krasnowski, Arch. Metall. Mater. 59 (1), 157-162 (2014).
  • [3] C. Hamilton, S. Dymek, M. Blicharski, Arch. Metall. Mater. 53 (4), 1047-1054 (2008).
  • [4] N. Nanninga, C. White, Int. J. Fatigue 31, 1215-1224 (2009).
  • [5] N. Nanninga, C. White, T. Furu, O. Anderson, R. Dickson, Int. J. Fatigue 30, 1569-1578 (2008).
  • [6] N. Nanninga, C. White, R. Dickson, J. Mater. Eng. Perform. 20 (7), 1235-1241 (2010).
  • [7] P. Dong, D. Sun, H. Li, Mater. Sci. Eng. A 576, 29-35 (2013).
  • [8] S. S. Di, X. Q. Yang, D. P. Fang, G. H. Luan, Mater. Chem. Phys. 104, 244-248 (2007).
  • [9] C. Y. Deng, H. Wang, B. M. Gong, X. Li, Z. Y. Lei, Int. J. Fatigue 83, 100-108 (2015).
  • [10] Z. H. Zhang, W. Y. Li, J. L. Li, Y. J. Chao, Int. J. Adv. Manuf. Technol. 73, 1213-1218 (2014).
  • [11] S. D. Ji, Z. W. Li, Z. L. Zhou, L. G. Zhang, J. Mater. Sci. Technol. 90 (9), 3045-3053 (2017).
  • [12] P. Lacki, W. Więckowski, P. Wieczorek, Arch. Metall. Mater. 60 (3), 2297-2306 (2015).
  • [13] B. Rams, A. Pietras, K. Mroczka, Arch. Metall. Mater. 59 (1), 385-392 (2014).
  • [14] H. J. Liu, H. Fuji, M. Maeda, K. Nogi, J. Mater. Process. Technol. 142, 692-696 (2003).
  • [15] M. Wu, C. S. Wu, S. Gao, J. Manuf. Process. 29, 85-95 (2017).
  • [16] K. Krasnowski, Arch. Metall. Mater. 59 (1), 157-162 (2014).
  • [17] H. Aydin, M. Tutar, A. Durmus, A. Bayram, T. Sayaca, Trans. Indian. Inst. Met. 65 (1), 21-30 (2012).
  • [18] X. M. Zhang, D. Feng, X. K. Shi, S. D. Liu, Trans. Nonferrous. Met. Soc. China. 23, 765-772 (2013).
  • [19] S. D. Ji, X. C. Meng, J. G. Liu, L. G. Zhang, S. S. Gao, Mater. Des. 62, 113-117 (2014).
  • [20] H. J. Liu, X. Q. Liu, X. G. Wang, T. H. Wang, S. Yang, Int. J. Adv. Manuf. Technol. 88, 1-11 (2016).
  • [21] Z. L. Liu, Y. Wang, S. D. Ji, Z. W. Li, Mater. Sci. Technol. 34 (2), 1-11 (2017).
  • [22] Y. C. Chen, H. J. Liu, J. C. Feng, Mater. Sci. Eng. A 420, 21-25 (2006).
  • [23] Z. H. Zhang, W. Y. Li, Y. Feng, J. L. Li, Y. J. Chao, Acta. Mater. 92, 117-125 (2015).
  • [24] Y. Yue, Z. Li, S. Ji, Y. Huang, Z. Zhou, J. Mater. Sci. Tech. 32, 671-675 (2016).
  • [25] Q. L. Dai, Z. F. Liang, G. Q. Chen, L. C. Meng, Q. Y. Shi, Mater. Sci. Eng. A 580, 184-190 (2013).
  • [26] T. H. Tra, M. Okazaki, K. Suzuki, Int. J. Fatigue 43, 23-29 (2012).
  • [27] Y. Huang, X. Meng, Y. Zhang, J. Cao, J. Feng, J. Mater. Process. Tech. 250, 313-319 (2017).
  • [28] Y. Huang, Y. Xie, X. Meng, Z. Lv, J. Cao, J. Mater. Process. Tech. 252, 233-241 (2018).
  • [29] S. D. Ji, Y.Y. Jin, Y. M. Yue, S. S. Gao, Y. X. Huang, L. Wang, J. Mater. Sci. Technol. 29, 955-960 (2013).
  • [30] P. Dong, H. M. Li, D. Q. Sun, W. B. Gong, J. Liu, Mater. Des. 45, 524-531(2013).
  • [31] W. Sylwestrowicz, E. Hall, The deformation and ageing of mild steel III discussion of results. Proc. Phys. Soc. Sect. B. 64 (9), 495-502 (1951).
  • [32] C. Z. Zhou, X. Q. Yang, G. H. Luan, Scripta. Mater. 53, 1187-119 (2005).
  • [33] M. Ericsson, R. Sandström, Int. J. Fatigue 32, 302-309 (2010).
  • [34] C. He, Y. J. Liu, J. F. Dong, Q. Y. Wang, D. Wagner, C. Bathias, Int. J. Fatigue 82, 379-386 (2016).
  • [35] J. Hoshino, Bull. JSME. 4 (13), 33-40 (2008).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aff6667b-4705-4edd-828e-32e88704be70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.