PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing microstructural and thermal properties of TiNiPd shape memory alloys through copper addition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study explores how the addition of copper (Cu) addition impacts the microstructural and thermal properties of shape memory alloys (SMAs), specifically TiNiPd alloys. Two compositions, 0Cu and 10Cu, were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), Optical Microscopy (OM) and differential scanning calorimetry (DSC). SEM revealed second-phase precipitates distributed along grain boundaries in both alloys, with sizes ranging from 0.9 to 2.9 μm; however, Cu addition reduced precipitate density without affecting size. The grain size increased significantly from 12.5 μm in 0Cu to 17.5 μm in 10Cu, attributed to decreased nickel content and reduced pinning effects of precipitates. Aging at 600°C and 700°C further influenced precipitate behavior and transformation temperatures, with Cu-containing alloys demonstrating enhanced thermal characteristics. DSC analysis indicated significant increases in transformation temperatures and decreased thermal hysteresis with Cu addition. These results highlight the promise of Cu as a viable substitute for Ni in enhancing the properties of TiNiPd SMAs.
Rocznik
Strony
66--81
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, University of Engineering and Technology Peshawar, Pakistan
autor
  • Department of Mechanical Engineering, University of Engineering and Technology Peshawar, Pakistan
  • Ghulam Ishaq Khan (GIK) Institute of Engineering and Science and Technology, Topi District Swabi, Khyber Pakhtunkhwa, Pakistan
  • Institute of Industrial Control System, Rawalpindi, Pakistan
Bibliografia
  • 1. İ. Özkul, M. A. Kurgun, E. Kalay, C. A. Canbay, and K. Aldaş, “Shape memory alloys phenomena: classification of the shape memory alloys production techniques and application fields,” Eur. Phys. J. Plus, vol. 134, no. 12, p. 585, 2019.
  • 2. K. Tanaka, S. Kobayashi, and Y. Sato, “Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys,” Int. J. Plast., vol. 2, no. 1, pp. 59–72, 1986.
  • 3. V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials, vol. 12, no. 16, p. 2616, 2019.
  • 4. C. Velmurugan, V. Senthilkumar, S. Dinesh, and D. Arulkirubakaran, “Machining of NiTi-shape memory alloys-A review,” Mach. Sci. Technol., vol. 22, no. 3, pp. 355–401, May 2018, doi: 10.1080/10910344.2017.1365894.
  • 5. M. Kaftaranova, V. Hodorenko, S. Anikeev, N. Artyukhova, A. V. Shabalina, and V. Gunther, “Investigation of the effect of copper addition on physical and mechanical properties of TiNi-Cu porous alloy,” Metals, vol. 12, no. 10, p. 1696, 2022.
  • 6. S. U. Rehman et al., “Influence of Cu addition on transformation temperatures and thermal stability of TiNiPd high temperature shape memory alloys,” Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., vol. 233, no. 5, pp. 800–808, May 2019, doi: 10.1177/1464420717702679.
  • 7. M. Khan, H. Y. Kim, T. Nam, and S. Miyazaki, “Effect of Cu addition on the high temperature shape memory properties of Ti50Ni25Pd25 alloy,” J. Alloys Compd., vol. 577, pp. S383–S387, 2013.
  • 8. M. I. Khan, H. Y. Kim, and S. Miyazaki, “A Review of TiNiPdCu Alloy System for High Temperature Shape Memory Applications,” Shape Mem. Superelasticity, vol. 1, no. 2, pp. 85–106, 2015, doi: 10.1007/s40830-015-0019-y.
  • 9. M. I. Khan, H. Y. Kim, Y. Namigata, T. Nam, and S. Miyazaki, “Combined effects of work hardening and precipitation strengthening on the cyclic stability of TiNiPdCu-based high-temperature shape memory alloys,” Acta Mater., vol. 61, no. 13, pp. 4797–4810, 2013.
  • 10. S. ur Rehman, M. Khan, A. N. Khan, L. Ali, S. I. H. Jaffery, and M. Khurram, “Quaternary alloying of copper with Ti50Ni25Pd25 high temperature shape memory alloys,” Mater. Sci. Eng. A, vol. 763, p. 138148, 2019.
  • 11. R. Radhamani and M. Balakrishnan, “The effect of copper on phase transformation, microstructure and mechanical characterization of Ni50-x Ti50 Cux shape-memory alloy,” Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., vol. 237, no. 5, pp. 1137–1145, 2023, doi: 10.1177/14644207221137257.
  • 12. D. Kim, C. Park, J. Lee, K. Hong, Y. Park, and W. Lee, “Microstructure, shape memory behavior and mechanical properties of hot rolled Fe-17Mn-5Si-5Cr-4Ni-0.3 C-1Ti shape memory alloy,” Eng. Struct., vol. 239, p. 112300, 2021.
  • 13. J. Bhagyaraj, K. V. Ramaiah, C. N. Saikrishna, and S. K. Bhaumik, “Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot,” J. Alloys Compd., vol. 581, pp. 344–351, 2013.
  • 14. G. Tadayyon et al., “Effect of different stages of deformation on the microstructure evolution of Ti-rich NiTi shape memory alloy,” Mater. Charact., vol. 125, pp. 51–66, 2017.
  • 15. H. Z. Lu et al., “Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting,” J. Mater. Sci. Technol., vol. 101, pp. 205–216, 2022.
  • 16. Y. Chen, C. Ortiz Rios, B. McLain, J. W. Newkirk, and F. Liou, “TiNi-based Bi-metallic shape-memory alloy by laser-directed energy deposition,” Materials, vol. 15, no. 11, p. 3945, 2022.
  • 17. S. Ahmad et al., “Innovations in Additive Manufacturing of Shape Memory Alloys: Alloys, Microstructures, Treatments, Applications,” J. Mater. Res. Technol., vol. 32, pp. 4136-4197, 2024, https://www.sciencedirect.com/science/article/pii/S2238785424020052
  • 18. S. M. R. Varukuti, K. N. Chaithanya Kumar, and K. S. Suresh, “Effect of rolling temperature and annealing on grain refinement in TiNiCu shape memory alloys,” J. Mater. Eng. Perform., pp. 1–13, 2023.
  • 19. Y.-T. Hsu, C.-T. Wu, and C.-H. Chen, “Nanoscale-precipitate-strengthened (Ni, Cu)-rich TiNiCu shape memory alloy with stable superelasticity and elastocaloric performance,” J. Alloys Compd., vol. 997, p. 174937, 2024.
  • 20. M. Ebrahimi, S. Attarilar, C. Gode, S. R. Kandavalli, M. Shamsborhan, and Q. Wang, “Conceptual analysis on severe plastic deformation processes of shape memory alloys: mechanical properties and microstructure characterization,” Metals, vol. 13, no. 3, p. 447, 2023.
  • 21. S. ur Rehman, M. Khan, A. N. Khan, M. I. Khan, L. Ali, and S. H. I. Jaffery, “Effect of precipitation hardening and thermomechanical training on microstructure and shape memory properties of Ti50Ni15Pd25Cu10 high temperature shape memory alloys,” J. Alloys Compd., vol. 616, pp. 275–283, 2014. 0
  • 22. M. I. Khan, H. Y. Kim, T. Nam, and S. Miyazaki, “Formation of nanoscaled precipitates and their effects on the high-temperature shape-memory characteristics of a Ti50Ni15Pd25Cu10 alloy,” Acta Mater., vol. 60, no. 16, pp. 5900–5913, 2012.
  • 23. T. H. Nam, T. Saburi, and K. Shimizu, “Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys,” Mater. Trans. JIM, vol. 31, no. 11, pp. 959–967, 1990.
  • 24. S. ur Rehman et al., “Transformation behavior and shape memory properties of Ti50Ni15Pd25Cu10 high temperature shape memory alloy at various aging temperatures,” Mater. Sci. Eng. A, vol. 619, pp. 171–179, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afe67ab7-59ad-4900-ae3e-94ddf3d4e1ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.