PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Changes in activity of acid hydrolases in tissues of wild pheasants induced by heavy metals

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zmiany aktywności kwaśnych hydrolaz w tkankach dzikich bażantów wywołane przez metale ciężkie
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determinate the activity of chosen acid hydrolases in tissues of pheasants (Phasianus colchicus L.) and first attempts to use these enzymes as biomarkers of the effect of birds exposure to heavy metals in the environment. The samples of liver, kidneys and testes were collected from wild pheasants shot in the Podkarapacie region in contaminated (n = 5) and clear (n = 5) areas. Tissues were examined for the cadmium and lead concentrations by AAS method, as well as the activity of five hydrolases. The major site of cadmium accumulation were kidneys, the levels of Cd found in liver and testes were by 5-fold and 30-fold lower (P < 0.05), respectively. Similarly, Pb concentrations observed in the liver and testes were lower than in kidney, by 1.5-fold and 6-fold, respectively. The presence of four glycosidases and arylsulphatase in all examined tissues was demonstrated and N-acetyl-β-D-glucosaminiadase (NAG) was identified as the most active enzyme in all studied tissues. Significant differences (P < 0.05) were observed only in the level of NAG activity in liver of pheasants inhabiting the contaminated area as compared to the birds from the clear region (control group). We conclude that the determination of NAG in birds organs can be used as biomarker of environmental exposure to cadmium.
PL
Celem badań było oznaczenie aktywności wybranych kwaśnych hydrolaz w tkankach bażantów (Phasianus colchicus L.) oraz zastosowanie po raz pierwszy tych enzymów jako biomarkerów narażenia środowiskowego ptaków na metale ciężkie. Próbki wątroby, nerek oraz jąder zostały pobrane z bażantów odstrzelonych na Podkarpaciu w rejonie zurbanizowanym (n = 5) i ekologicznym (n = 5). Analizy tkanek obejmowały oznaczenie zawartości metali ciężkich (Cd, Pb) metodą AAS oraz aktywności kwaśnych hydrolaz. Głównym narządem docelowym akumulacji metali ciężkich były nerki, zawartość kadmu w wątrobie oraz jądrach była niższa odpowiednio 5- i 30-krotnie. Podobną zależność zaobserwowano dla ołowiu, koncentracja tego metalu w jądrach i nerkach była niższa odpowiednio 1.5- i 6-krotnie. We wszystkich badanych tkankach stwierdzono obecność czterech glikozydaz i arylosulfatazy, przy czym najobfitszym źródłem enzymów były jądra, a najbardziej aktywnym enzymem we wszystkich tkankach była N-acetylo-β-D-glukozaminidaza (NAG). Wykazano istotne różnice (P < 0.05) w poziomie aktywności NAG w wątrobie bażantów bytujących na terenie zurbanizowanym w porównaniu do regionu ekologicznego. Aktywność NAG w tkankach ptaków może być przydatnym biomarkerem środowiskowego narażenia na kadm.
Rocznik
Strony
93--101
Opis fizyczny
Bibliogr. 28 poz., wykr., tab.
Twórcy
  • Department of Chemistry and Food Toxicology, Faculty of Biology and Agriculture, University of Rzeszów, ul. Ćwiklińskiej 2, 35–601 Rzeszów, Poland
  • Faculty’s Laboratory, Faculty of Biology and Agriculture, University of Rzeszów, ul. Ćwiklińskiej 2, 35–601 Rzeszów, Poland.
autor
  • Department of Chemistry and Food Toxicology, Faculty of Biology and Agriculture, University of Rzeszów, ul. Ćwiklińskiej 2, 35–601 Rzeszów, Poland
Bibliografia
  • [1] Kabata-Pendias A, Pendias H. Biogeochemia pierwiastków śladowych [Biogeochemistry of trace element]. 2nd ed. Warsaw: Polish Scientific Publishers PWN; 1999, p.389 [in Polish].
  • [2] świergosz R, Zakrzewska M, Sawicka-Kapusta K, Bacia K, Janowska I. Accumulation of Cadmium in and Its Effect on Bank Vole Tissues after Chronic Exposure. Ecotoxicol Environ Safety. 1998;41:130-136. DOI: 10.1006/eesa.1998.1677.
  • [3] Gadzała-Kopciuch R, Berecka B, Bartosiewicz J, Buszewski B. Some considerations about bioindicators in environment al monitoring. Pol J Environ Stud. 2004;13:453-462.
  • [4] Gil F, Pla A. Biomarkers as biological indicators of xenobiotic exposure. J Appl Toxicol. 2001;21:245-255. DOI: 10.1002/jat.769.
  • [5] Toman R, Massanyi P, Lukac N, Ducsay L, Golian J. Fertility and content of cadmium in pheasant (Phasianus colchicus) following cadmium intake in drinking water. Ecotoxicol Environ Safety 2005;62:112-117. DOI: 10.1016/j.ecoenv.2005.02.008.
  • [6] Brzóska MM, Stypułkowska A, Zwierz K, Moniuszko-Jakoniuk J. Urinary activities of N-acetyl- β-D-glucosaminidase and its isoenzyme B in cadmium – exposed rats. Pol J Environ Stud. 2004;13:121-125.
  • [7] Fotakis G, Cemeli E, Anderson D, Timbrell JA. Cadmium chloride-induced DNA and lysosomal damage in hepatoma cell line. Toxicol in Vitro. 2005;19:481-489.
  • [8] Thomas LDK, Hodgson S, Nieuwenhuijsen M, Jarup L. Early kidney damage in a population exposed to cadmium and other heavy metals. Environ Health Perspect. 2009;117:181-184. DOI: 10.1289/ehp.11641.
  • [9] Rao PV, Jordan SA, Bhatnagar MK. Ultrastructure of Sidney of ducks expose to methylmercury, lead and cadmium in combination. J Environ Pathol Toxicol Oncol. 1989;9:19-44.
  • [10] Bernard A, Thielemans N, Roels H, Lauwerys R. Association between NAG-B and cadmium in urine with no evidence of a threshold. Occup Environ Med. 1995;52:177-180. DOI: 10.1136/oem.52.3.177.
  • [11] Bairati Ch, Goi G, Bollini D, Roggi C, Luca M, Apostoli P, Lombardo A. Effects of lead and manganese on the release of lysosomal enzymes in vitro and in vivo. Clin Chim Acta. 1997;261:91-101.
  • [12] Dżugan M, Lis M, Droba M, Niedziółka JW. Effect of cadmium injected in ovo on hatching results and the activity of plasma hydrolytic enzymes in newly hatched chicks. Acta Vet. Hung. 2011;3:337-247. DOI: 10.1556/AVet.2011.020.
  • [13] Marchewka Z, Kuźniar J, Lembas-Bogaczyk J, Jacyszin K. N-acetyl-B-D-glucosaminidase isoenzymes in the diagnosis of poisoning and kidney diseases. Int Urol Nephrol. 1994;26:229-236. DOI: 10.1007/BF02768292.
  • [14] Chia KS, Mutti A, Tan C, Ong HY, Jeyaratnam J, Ong CN, Lee E. Urinary N-acetyl-β-Dglucosaminidase activity in workers exposed to inorganic lead. Occup Environ Med. 1994;51:125-129. DOI: 10.1136/oem.51.2.125.
  • [15] Kalahasthi R B, Rajmohan HR, Rajan BK, Karuna Kumar M. Urinary N-acetyl-β-D-glucosaminidase and its isoenzymes A and B in workers exposed to cadmium at cadmium plating. J Occup Med Toxicol. 2007;2:5. DOI: 10.1186/1745-6673-2-5.
  • [16] Hultberg B, Olsson JE. Diagnostic value of determinations of lysosomal hydrolases in CSF of patients with neurological diseases. Acta Neurol Scand. 1978;57:201-215. DOI: 10.1111/j.1600-0404.1978.tb05867.x.
  • [17] Turecky L, Uhlikova E. Diagnostic significance of urinary enzymes in nephrology. Bratisl Lek Listy 2003;104:27-31.
  • [18] Wedeen RP, Udasin I, Fiedler N, Dhaese P, Debroe ME, Gelpi E, Jones KW. Patterns of tubular proteinuria from metals and solvents. In: Mendelsohn ML, Mohr LC, and Peeters JP (Eds). Biomarkers: Medical and Workplace Applications. Washington, DC: The National Academies Press; 1998;311-321.
  • [19] Dżugan M. Distribution of acid glycosidases in the male genital tract of the pheasant. Reprod Biol. 2006;6:65-72.
  • [20] Barrett AJ, Heath MF. Lysosomal enzymes. In: Lysosomes: A laboratory handbook, Dingle JT, editor. Amsterdam, The Netherlands: Elsevier North-Holland, 1977.
  • [21] Baum H, Dogson KS, Spencer B. Studies on sulphatases. 21. The anomalus kinetics of arylsulphatase A of human tissues: the anomalies. Biochem J. 1958;69:567-572.
  • [22] Lowry OH, Rosegrough NJ, Farr AL, Randal RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-275.
  • [23] Garcia-Fernandez AJ, Sanchez-Garcia JA, Jimenez-Montalban P, Luna A. Lead and cadmium in Wild birds in southeastern Spain. Environ Toxicol Chem. 1995;14:2049-2058. DOI: 10.1002/etc.5620141207.
  • [24] Mochizuki M, Hondo R, Kumon K, Sasaki R, Matsuba H, Ueda F. Cadmium contamination in wild birds as an indicato of environment al pollution. Environ Monit Assess. 2002;73:229-235. DOI:10.1007/s10653-009-9274-1.
  • [25] Kalisińska E, Salicki W, Mysłek P, Kavetska KM, Jackowski A. Using of Mallard to biomonitor heavy metal contamination of wetlands in North – western Poland. Sci Tot Environ. 2004;320:145-161. DOI: 10.1016/j.scitotenv.2003.08.014.
  • [26] Dżugan M, Książkiewicz J. Activity of α- and β-mannosidases in semen and reproductive organs of the drake. Reprod Biol. 2009;1:25-37.
  • [27] Nordberg GF. Biomarkers of exposure, effects and susceptibility in humans and their application in studies of interactions among metals in China. Toxicol Lett. 2010;192:45-49. DOI: 10.1016/j.toxlet.2009.06.859.
  • [28] Yamagami T, Suna T, Fukui Y, Ohashi F, Takada S, Samurai H, Aoshima K, Kieda M. Biological variations in cadmium, α1-microglobulin, β1-microglobulin and N-acetyl-β-D-glucosaminidase in adult women in non-polluted area. Int Arch Occup Environ Health 2008;81:263-271.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afe3ec79-c216-49ac-8b6a-674dcbf34d36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.