PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Glass and glass-ceramic porous materials for biomedical applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biosilicate glasses and glass-ceramic materials obtained on their basis are an important research area in tissue engineering due to their ability to regenerate bones. The most important features of bioactive glasses include: the ability to biodegrade and high bioactivity. Appropriate porosity, pore size, surface structure and topography, chemical composition and ion release kinetics, as well as mechanical properties enable the adhesion of mesenchymal cells and their differentiation towards osteoblast cells and stimulate further proliferation and angiogenesis. This study concerns the subject of bioglass, in particular Bioglass 45S5 and glass-crystalline porous materials in the context of their properties enabling the reconstruction of bone tissue and possible applications. The article addresses crucial issues of shaping the properties of glass and glass crystalline porous structures by introducing changes in their composition and the method of their production, and also discusses the importance of foaming agents.
Wydawca
Rocznik
Strony
302--310
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
  • Czestochowa University of Technology, Poland
  • Czestochowa University of Technology, Poland
autor
  • Czestochowa University of Technology, Poland
Bibliografia
  • 1. Adams L., Essien E., Adesalu T., Julius M., 2017. Bioactive Glass 45S5 from Diatom Biosilica, Journal of Science: Advanced Materials and Devices 2, 476-482.
  • 2. Arcaro S., Goulart de Oliveira Maia B., Tramontin Souza M. et al., 2016. Thermal Insulating Foams Produced From Glass Waste and Banana Leaves, Materials Research 19.
  • 3. Borden M., WesterlundL. E., Lovric V., Walsh W., 2022. Controlling the bone regeneration properties of bioactive glass: Effect of particle shape and size, Journal of biomedical materials research, Applied biomaterials 110(4), 910-922.
  • 4. Borkowski, S., Ulewicz, R., Selejdak, J., Konstanciak, M., Klimecka-Tatar, D., 2012. The use of 3x3 matrix to evaluation of ribbed wire manufacturing technology, METAL 2012- 21st International Conference on Metallurgy and Materials, 1722-1728.
  • 5. Cannio M., Belluci D., Roether J. A., Boccaccini D. N., Cannillo V., 2021. Bioactive Glass Applications: A Literature Review of Human Clinical Trials, Materials (Basel, Switzerland) 14(18):5440.
  • 6. Chakraborty S., Uppaluri R., Das C., 2020. Effect of Pore Former (Saw Dust) Characteristics on the Properties of Sub‐micron Range, Low Cost Ceramic Membranes, International Journal of Ceramic Engineering & Science 2(5), 243-253.
  • 7. Daskalakis E., Liu F., Cooper G., Weightman A., Koc B., Blunn G., Bártolo, P., 2021. Bioglasses for Bone Tissue Engineering. Bio-Materials and Prototyping, Applications in Medicine 4,165-193.
  • 8. Dávalos J., Bonilla A., Villaquirán-Caicedo M. A., 2020. Preparation of glass-ceramic materials from coal ash and rice husk ash: Microstructural, physical and mechanical properties, Boletín de la Sociedad Española de Cerámica y Vidrio 60(3), 183-193.
  • 9. Dziadek M., Pawlik J., Cholewa-Kowalska K., 2015. Szkła bioaktywne w inżynierii tkankowej, Inżynieria Biomedyczna 20, 156-165.
  • 10. El-Wassefy N., Özcan M., Abo El-Farag S. A., 2021. Effect of Simultaneous Sintering of Bioglass to a Zirconia Core on Properties and Bond Strength, Materials (Basel, Switzerland) 14(23) :7107.
  • 11. Erasmus E., Johnson O., Sigalas I., Massera J., 2017. Effects of Sintering Temperature on Crystallization and Fabrication of Porous Bioactive Glass Scaffolds for Bone Regeneration, Scientific Reports 7:6046.
  • 12. Espinal L., 2012. Porosity and Its Measurement, Characterization of Materials, 1-10.
  • 13. Fernandes H.; Ferreira D., Andreola F. et al., 2014. Environmental friendly management of CRT glass by foaming with waste egg shells, calcite or dolomite, Ceramics Internationa 40(8), 371-379.
  • 14. Fu Q., Saiz E., Rahaman N., Tomsia A., 2011. Bioactive Glass Scaffolds for Bone Tissue Engineering: State of the Art and Future Perspectives, Mater Sci Eng C Mater Biol App 31(7), 1245-1256.
  • 15. Gerhardt L. C.; Boccaccini A. R., 2010. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering, Materials (Basel, Switzerland), 3867-3910.
  • 16. Giglio R., Vieste G., Mondello T., Balduzzi G., Masserini B., Formenti I. et al., 2020. Efficacy and Safety of Bioactive Glass S53P4 as a Treatment for Diabetic Foot Osteomyelitis, The Journal of Foot and Ankle Surgery 60(2), 292-296.
  • 17. Hakim I. M., Mustaffar M., Ismail S., Ismail A., 2022. A Review of Porous Glass-Ceramic Production Process, Properties and Applications, Journal of Physics: Conference Series, 2169.
  • 18. Hench L. L., 2006. The Story of Bioglass, Journal of Materials Science. Materials in Medicine 17(11), 967-978.
  • 19. Kaur G., Pandey O. P., Singh K., Homa D., Scot B., Pickrell G., 2014. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation, Journal of biomedical materials research Part A 102(1), 254-274.
  • 20. Kokubo T., Takadama H., 2006. How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27, 2907-2915.
  • 21. Kuzior, A., Zozul'ak, J., 2019. Adaptation of the Idea of Phronesis in Contemporary Approach to Innovation, Management Systems in Production Engineering, 27(2), 84 87. DOI: 10.1515/mspe-2019-0014
  • 22. Leenakul W., Tunkasiri T., Tongsiri N. et al., 2016. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica, Materials Science and Engineering C 61, 695-704.
  • 23. Lubas M., Zawada A., Przerada I., Iwaszko J., 2017. Stopień rozdrobnienia surowca spieniającego a porowatość szkła piankowego, Szkło i Ceramika 5, 19-22.
  • 24. Mabrouk M., 2015. PhD: Preparation of PVA/Bioactive Glass nanocomposite scaffolds. In vitro studies for applications as biomaterials. Association with active molecules.
  • 25. Mazzoni E., Iaquinta M., Lanzillotti, C. et al., 2021. Bioactive Materials for Soft Tissue Repair, Frontiers in Bioengineering and Biotechnology 9:613787.
  • 26. Montazerian M., Zanotto E., 2016. Bioactive Glass-ceramics: Processing, Properties and Applications, Bioactive Glasses: Fundamentals, Technology and Applications, 27-60.
  • 27. Opydo, M., Dudek, A., Kobyłecki, R., 2019. Characteristics of solids accumulation on steel samples during co-combustion of biomass and coal in a CFB boiler, Biomass and Bioenergy, 120, 291-300. DOI: 10.1016/j.biombioe.2018.11.027
  • 28. Pantulap U. M., Arango O., Boccaccini, A., 2022. Bioactive glasses incorporating less common ions to improve biological and physical properties, Journal of Materials Science: Materials in Medicine 33:3.
  • 29. Pereira M., Oliveira J., Fonseca C., 2021. Influence of the use of rice husk as source of silica on the sol-gel synthesis of bioglass, Cerâmica 67, 333-337.
  • 30. Pietraszek, J., Radek, N., Goroshko, A.V., 2020. Challenges for the DOE methodology related to the introduction of Industry 4.0, Production Engineering Archives, 26(4), 190 194. DOI: 10.30657/pea.2020.26.33
  • 31. Radek, M., Pietraszek, A., Kozień, A., Radek, K., Pietraszek, J., 2023. Matching Computational Tools to User Competence Levels in Education of Engineering Data Processing, Materials Research 10.21741/9781644902691-52
  • 32. Radek, N., Pietraszek, J., Pasieczynski, Ł., 2019. Technology and application of anti graffiti coating systems for rolling stock, METAL 2019 - 28th Int. Conf. on Metallurgy and Materials, 1127-1132. DOI: 10.37904/metal.2019.909
  • 33. Scendo, M., Radek, N., Trela, J., 2013. Influence of laser treatment on the corrosive resistance of WC-Cu coating produced by electrospark deposition, International Journal of Electrochemical Science, 8(7), 9264-9277.
  • 34. Scendo, M., Trela, J., Radek, N., 2012. Purine as an effective corrosion inhibitor for stainless steel in chloride acid solutions, Corrosion Reviews, 30(1-2), 33-45. DOI: 10.1515/CORRREV-2011-0039
  • 35. Serbena F., Mathias I., Foerster C., Zanotto E., 2015. Crystallization toughening of a model glass-ceramic, Acta Materialia 86, 216-228.
  • 36. Serna-Jiménez J. A.; Luna-Lama F., Caballero Á. et al, 2021. Valorisation of Banana Peel Waste as a Precursor Material for Different Renewable Energy Systems, Biomass and bioenergy 155:106279.
  • 37. Ulewicz, R., 2018. Outsorcing quality control in the automotive industry, MATEC Web of Conf., 183, art.03001. DOI: 10.1051/matecconf/201818303001
  • 38. Yang S., Leong K. F., Du Z., Chua C. K., 2001. The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue engineering 7(6), 679-689.
  • 39. Youssef H., Safwa N., Shehata R. et al., 2022. Synthesis of Natural Nano-Hydroxyapatite from Snail Shells and Its Biological Activity: Antimicrobial, Antibiofilm, Membranes 12(4), 408.
  • 40. Zaini H., Roslan J., Saallah S. et al., 2022. Banana peels as a bioactive ingredient and its potential application in the food industry, Journal of Functional Foods 92
  • 41. Zhang R., Qi J., Gong M. et al., 2021. Effects of 45S5 bioactive glass on the remineralization of early carious lesions in deciduous teeth: an in vitro study, BMC Oral Health 21(1):576.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afde2b0b-154a-4428-af4e-a09db8d8cbca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.