PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemofitostabilizacja gleby zanieczyszczonej kadmem, cynkiem i ołowiem

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Chemophytostabilisation of Soil Contaminated with Cadmium, Lead and Zinc
Języki publikacji
PL
Abstrakty
EN
Assisted phytostabilisation involves the use of plants and soil additives for physical stabilization of the soil and chemical immobilization of contaminants. This technique aims to establish a vegetation cover with metal-tolerant plants and thus reduce leaching of metals. The main aim is to reduce the risk of incorporation of metal into the food chain. In the conducted experiment contaminated soil was collected from the area surrounding a zinc smelter in Miasteczko Slaskie, in the Silesia region of Poland. Soil in the study area has been contaminated with metals, especially Cd, Pb and Zn. Moreover, soils of the study area are also acidified. The role of sewage sludge and inorganic amendments as an immobilising agents in the attenuating phytostabilisation of metal-contaminated soil was evaluated using grass species Festucaarundinacea Schreb. The biosolid used was anaerobically digested sewage sludge, collected from the industrial waste water treatment plant and juices manufacturer (food industry). The soil was mixed with sewage sludge (sewage sludge accounted for 1and 3% of dry weight), lime and inorganic fertilizers (potassium phosphate, TSP at 0.8% each). A plant growth experiment was conducted in a growth chamber for 10 weeks. The plants were grown under artificial conditions, suitable for proper growth of plants. Plants growing on amended soil were devoid of any macroscopic symptoms of metal toxicity or nutrient deficiency, in contrast to plants grown on non-amended soil, where growth was inhibited and some phytotoxic effects were observed. For amended soil, plant growth was most likely influenced by improved soil conditions due to nutrient-rich amendments and metals immobilisation. Mobile fractions of metals decreased in amended soil, and the same pattern was observed for metal concentrations in plant tissues. However, the best results were obtained for the variants of combined application of sewage sludge and inorganic amendments. All investigated metals accumulated mainly in root tissues in combination with sewage sludge application. A significant reduction in metal uptake by plants was achieved after sewage sludge application, which is attributed to decreased bioavailability and the stabilisation of metals in soil. In the experiment the introduction of soil liming treatment allowed to maintain the pH at a constant level after 10 weeks of the experiment (5.5–7) (Fig. 1). The K5-K10 variants achieved a significant reduction in bioavailable forms (0.01 M CaCl2 extraction). In a study of biomass (Fig. 3) the highest yield (5.5 g DM) was obtained for the combined use of a combination of potassium and phosphate deposits and combinations of superphosphate and combined use of sewage sludge (2.5 g DM/pot). The highest immobilization effects were obtained for combined application of sewage sludge, lime fertilizer and superphosphate or potassium phosphate as compared to other options. The highest degree of immobilization of three tested heavy metals: cadmium, zinc and lead was obtained only with the application of sewage sludge and mineral amendments at a dose of TW +FP 0.8% + 1% d.m. sewage sludge. Effective process of chemophytostabilisation with the use of grass and organic additive and inorganic additives in situ sandy areas and heavily contaminated with heavy metals, can be obtained solely with the combined use of investigated additives and treatment.
Rocznik
Strony
1982--2002
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
  • Politechnika Częstochowska
autor
  • Politechnika Częstochowska
autor
  • Politechnika Częstochowska
autor
  • Politechnika Częstochowska
Bibliografia
  • 1. Adriano D.: Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. Springer Verlag New York 2001.
  • 2. Alvarenga P., Goncalves A.P., Fernandes R.M., de Varennes A., E. Duarte, Cunha-Queda A.C., Vallini G.: Reclamation of a mine contaminated soil using biologically amended soil. Aus. J. Soil Res. 48. 459–469 (2009).
  • 3. Baryła R., Sawicka J., Kulik M., Lipińska H.: Content of Components in Some Grasss Species Irrigated with Purified Sewage. J. Elementol.. 14(1). 5–12 (2009).
  • 4. Basta N.T., Sloan J.J.: Bioavailablility of heavy metals in strongly acidic soils treated with exceptional quality biosolids. J. Environ. Qual. 28. 633–638 (1999).
  • 5. Berti W.R., Cunningham S.C.: Phytostabilization of metals.[w]: Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. Eds. I. Raskin, B.D. Ensley. New York: John Wiley and Sons, Inc.: 71–88 (2000).
  • 6. Bień J., Milczarek M., Neczaj E., Worwąg M., Okwiet T., Kowalczyk, M.: Composting process as an alternative method for the disposal of sewage sludge and organic fraction of municipal solid waste. Civil and Environmental Engineering Reports. 6. 127–136 (2011).
  • 7. Bień J.B.: Osady ściekowe. Teoria i praktyka. Wyd. P.Cz. Częstochowa 2002.
  • 8. Cao X., Ma L.Q., Shiralipour A.: Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pterisvittata L..Environ. Pollut. 126. 157–167 (2003).
  • 9. Cao X., Wahbi A., Ma L., Li B., Yang Y.: Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid, J. Hazard. Mater. 164. 555–564 (2009).
  • 10. Dziadek K., Wacławek W.: Metale w środowisku, Cz. I Metale ciężkie (Zn, Cu, Ni, Pb, Cd) w środowisku glebowym, Katedra Fizyki Chemicznej Uniwersytetu Opolskiego, Instytut Chemii, R. 10, Nr 1–2, Opole 2005.
  • 11. Fijałkowski K., Kacprzak M., Grobelak A.,Placek A.: The influence of selected soil parameters on the mobility of heavy metals in soil. Inżynieria i Ochrona środowiska, 15 (1). 81–92 (2012).
  • 12. Filipek T., Domańska J.: Zawartość Cd ogółem i formy przyswajalnej w glebach w zależności od pH oraz dodatku Pb. Zeszyty Problemowe Postępów Nauk Rolniczych. 2002.
  • 13. Flis J., Manecki M., Bajda T.: Solubility of pyromorphite Pb5(PO4)3Cl - mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et CosmochimicaActa. 75. 2011.
  • 14. Góral S.: Przyrodnicze użytkowanie osadów ściekowych. Ochrona i rekultywacja gruntów. Roślinność zielna w ochronie i rekultywacji gruntów. Polskie Towarzystwo Inżynierii Ekologicznej, Inżynieria Ekologiczna nr 3. Bydgoszcz/Warszawa 2001.
  • 15. Hettiarachchi G.M., Ryan J.A., Chaney R.L., La Fleur C.M.: Sorption and desorption of cadmium by different fractions of biosolids-amended soils. J. Environ. Qual. 32. 1684–1693 (2003).
  • 16. Kabata-Pendias A.: Soil-plant transfer of trace elements – an environmental issue.Geoderma.122. 143–149 (2004).
  • 17. Kacprzak M.:Wspomaganie procesów remediacji gleb zdegradowanych. Monografie. Wyd. P. Cz. Częstochowa. 128. 2007.
  • 18. Karczewska A., Kabała C.: Metodyka analiz laboratoryjnych gleb i roślin. Wyd. 4, Wrocław, Dostęp internetowy: http://www.ar.wroc.pl /~kabala
  • 19. Kumpiene J., Lagerkvist A., Maurice C.: Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review. Waste Manage. 28. 215–225 (2008).
  • 20. László S.: Stabilization of metals in acidic mine spoil with amendments and red fescue (Festucarubra L.) growth. Environmental Geochemistry and Health. 27. 289–300 (2005).
  • 21. Lee M., Paik I.S., Kim I., Kang H., Lee S.: Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. J. Hazard. Mater. 144. 208–214 (2007).
  • 22. Li Y.M., Chaney R.L., Siebielec G., Kerschner B.A.: Response of four turfgrass cultivars to limestone and biosolids-compost amendment of a zinc and cadmium contaminated soil at Palmerton, Pennsylvania. J Environ Qual.29. 1440–1447 (2000).
  • 23. McIntyre T.:Phytoremediation of Heavy Metals from soil. [w]: Tsao D.T., Phytoremediation. Springer, Berlin. 97–125 (2003).
  • 24. Melamed R., Bôas V.: Application of physico-chemical amendments for the counteraction of mercury pollution. Sci. Total Environ. 261. 203–209 (2003).
  • 25. Mench M., Vangronsveld N.W., Lepp N.W., Edwards R.:Physico-chemical aspects and efficiency of trace element immobilization by soil amendments. [w] Vangronsveld J., Cunningham S. D. (red). Metal-Contaminated Soils: In Situ Inactivation and Phytorestoration. Springer-Verlag. 151–182. Berlin 1998.
  • 26. Navari-Izzo F., Rascio N.: Heavy Metal Pollution: Damage and Defense Strategies in Plants. [w] Mohammad Pessarakli (red). Handbook of Plant and Crop Stress. CRC Press. 635–674 (2010).
  • 27. Nowak M., Kacprzak M., Grobelak A.: Osady ściekowe jako substytut glebowy w procesach remediacji i rekultywacji terenów skażonych metalami ciężkimi. Inżynieria i Ochrona Środowiska. 13. 121–131 (2010).
  • 28. Ownby D.R., Galvan K.A., Lydy M.J.: Lead and zinc bioavailability to Eiseniafetida after phosphorus amendment to repository soils, Environ. Pollut. 136. 315–321 (2005).
  • 29. Park J.H., Lamb D., Paneerselvam P., Choppala G., Bolan N., Chung J.W.: Role of organic amendmends on enhanced bioremediation of heavy metal(loid) contaminated soils. J.Haz.Mater. 185. 549–574 (2011).
  • 30. Pawłowski L.: How Heavy Metals Affect Sustainable Development. Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 13. 51–64. (2011).
  • 31. PN-ISO 10390 : 1997. Jakość gleby. Oznaczanie pH.
  • 32. PN-ISO 10694:2002.Jakość gleby, Oznaczanie zawartości węgla organicznego i całkowitej zawartości węgla po suchym spalaniu (analiza elementarna).
  • 33. PN-ISO 11047:2001. Jakość gleby. Oznaczanie kadmu, chromu, kobaltu, miedzi, ołowiu, manganu, niklu i cynku w ekstraktach z wodą królewską. Metody płomieniowej i elektrotermicznej absorpcyjnej spektrometrii atomowe.
  • 34. PN-ISO 11277:2005. Jakość gleby - Oznaczanie składu granulometrycznego w mineralnym materiale glebowym - Metoda sitowa i sedymentacyjna
  • 35. PN-ISO 11261: 2002. Jakość gleby. Oznaczanie azotu ogólnego. Zmodyfikowana metoda Kjeldahla.
  • 36. PN-ISO 11263:2002.Jakość gleby, Oznaczanie fosforu, Spektrometryczne oznaczanie fosforu rozpuszczalnego w roztworze wodorowęglanu sodu, 2002.
  • 37. PN-ISO 11465:1999.Jakość gleby, Oznaczanie zawartości suchej masy gleby i wody w glebie w przeliczeniu na suchą masę gleby, Metoda wagowa.
  • 38. PN-R-04032:1998.Gleba i utwory mineralne, Podział próbek i oznaczanie składu granulometrycznego.
  • 39. PN-R-04033:1998 Gleby i utwory mineralne. Podział na frakcje i grupy granulometryczne.
  • 40. Raicevic, S., Kaludjerovic-Radoicic, T., Zouboulis, A.I.: In-situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. Journal of Hazardous Materials B 117. 41–53 (2005).
  • 41. Raymond A., Wuana I., Okieimen F.E.: Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Network. ISRN Ecology. 17: 20–41 (2011).
  • 42. Siebielska I., Janowska B.: Porównanie zawartości wybranych metali ciężkich w próbkach kompostów. Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 13. 815–830 (2011).
  • 43. Sims J.T., Pierzynski G.M.: Assessing the impacts of agricultural, municipal, and industrial by-products on soil quality.[w]: J.F. Power, W.A. Dick (red), Land Application of Agricultural, Industrial, and Municipal By-products, Soil Science Society of America Inc., 237–262 (2000).
  • 44. Tsadilas C.D.: Heavy Metals Forms in Biosolids, Soils and Biosolid-Amended Soil. [w]: Magdi Selim H. (red) Dynamics and Bioavailability of Heavy Metals in the Rootzone. CRC Press. 271–291 (2001).
  • 45. Tsao, D.T.: Overview of Phytotechnologies. [w] Tsao D.T. (red), Phytoremediation. Springer. Berlin. 1-51. 2003.
  • 46. ViolanteA., Cozzolino V., Perelomov L., Caporale A.G., PignaM.: Mobility and biovailability of HM and metalloids in the soil, J. Soil. Sci. Plant Nutr. 10 (3). 268–292 (2010).
  • 47. Wang L.Q., Luo L., Ma Y.B., Wei D.P., Hua L.: In situ immobilization remediation of heavy metals-contaminated soils: a review. Chinese Journal of Applied Ecology. 20. 5. 1214–1222 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afd8c0f1-6cb3-493d-892f-792bca762364
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.