PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental Impact Analysis of Waste Lithium-Ion Battery Cathode Recycling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study introduces the current status of recycling technology for waste lithium-ion batteries, with a focus on the environmental impact during the recycling process of waste lithium-ion battery cathode materials. Composition of lithium-ion battery was analyzed in order to estimate which components are potentially dangerous to the environment. Heavy metals are main pollutants and change the pH of the environment; also, organic solvent actively reacts with oxidants and reducing agents in the environment. Other parts of waste battery mainly impact an air during the combustion or thermal decomposition generating toxic lithium, cobalt oxides, other gases. Sources of air, water, noise pollution, solid waste, and toxic chemicals generated in the recycling process were identified. Air pollutants generated at every stage of the process of positive electrode materials recycling include dust, acidic gases, and organic gases. The wastewater is generated mainly from the discharge pretreatment and cathode recovery processes (leaching and extraction). Although the wastewater volume is relatively small, its composition is complex, poorly biochemical and toxic (lithium compounds, organic solvents, etc.). In the dismantling process, plastic connectors, circuit boards, high-voltage wiring, powders, collectors and pool electrode material casings are generated as solid waste. Corresponding pollution prevention and control measures are suggested to prevent environmental pollution during the recycling process of waste lithium-ion battery cathode materials.
Rocznik
Strony
352--358
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Department of Chemical Engineering, Jiuquan College of Vocational Technology, Jiuquan 735000, China
  • Department of Ecology, Chemistry and Environmental Protection Technologies, Vinnytsia National Technical University, Vinnytsia 21021, Ukraine
Bibliografia
  • 1. Ai K. 2023. Prospective power battery recycling market. Automobiles and Accessories, 2, 54–57. (in Chinese)
  • 2. Castillo S., Ansart F., Laberty-Robert C., Portal J. 2002. Advances in the recovering of spent lithium battery compounds. Journal of Power Sources, 112(1), 247–254.
  • 3. Fan B., Chen X., Zhou T., Zhang J., Xu B. 2016. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Waste Management & Research, 34(5), 474481.
  • 4. Han L., He D.L., Liu A.J., Ma D.M. 2014. Advances in secondary use research of power li-ion battery. Chinese Journal of Power Sources, 38(3), 548–550.
  • 5. Hlavatska L., Ishchenko V., Pohrebennyk V., Salamon I. 2021. Material flow analysis of waste electrical and electronic equipment in Ukraine. Journal of Ecological Engineering, 22(9), 198–207.
  • 6. Ishchenko V., Dworak S., Fellner J. 2024. Hazardous household waste management in Ukraine and Austria. Journal of Material Cycles and Waste Management, 26(1), 635–641.
  • 7. Jiang J., Kan X., Lin J. 2021. Screening of toxic and harmful substances in the lithium power battery industry and research on countermeasures. Environmental pollution, prevention and control, 43(6), 801–806. (in Chinese)
  • 8. Li Y., Zhang J., Chen Q., Xia X., Chen M. 2021. Emerging of heterostructure materials in energy storage: a review. Advanced Materials, 33(27), 2100855.
  • 9. Lu Y., Peng K., Zhang L. 2022. Sustainable recycling of electrode materials in spent Li-ion batteries through direct regeneration processes. ACS ES&T Engineering, 2(4), 586–605.
  • 10. Rong R. 2018. Heavy metal pollution of waste lithium batteries and its prevention and control measures. China Metal Bulletin, 8, 88–90. (in Chinese)
  • 11. Rouhi H., Serna-Guerrero R., Santasalo-Aarnio A. 2022. Electrochemical discharge of Li-ion batteries-A methodology to evaluate the potential of discharge electrolytes without corrosion. Journal of Energy Storage, 55, 105734.
  • 12. Schmuch R., Wagner R., Hörpel G., Placke T., Winter M. 2018. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature energy, 3(4), 267–278.
  • 13. Tian Q., Zou A., Tong H., Yu W., Zhang J., Guo X. 2021. Research progress on recycling technology of cathode materials for spent ternary lithium-ion batteries. Materials Reports, 35(1), 1011–1012.
  • 14. Wang D., He Y. 2020. Analysis of supply and demand trend of cobalt resources in China. World Scientific Research Journal, 6(1), 173–180.
  • 15. Wang G., Zhang H., Wu T., Liu B., Huang Q., Su Y. 2020. Recycling and regeneration of spent lithium-ion battery cathode materials. Progress in Chemistry, 32(12), 2064–2072. (in Chinese)
  • 16. Wang J., Huang X. 2021. Hazards and recycling of used power batteries. Eco-economy, 37
  • 17. Wang Y., Zheng X., Tao T., Liu X., Sun Z. 2022. Review on selective recovery of lithium from cathode materials in spent lithium-ion batteries. Chemical Industry and Engineering Progress, 41(8), 45304543. (in Chinese)
  • 18. Wei Q., Wu Y., Li S., Chen R., Ding J., Zhang C. 2023. Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review. Science of The Total Environment, 866, 161380.
  • 19. Wu K. 2021. Development status and prospects of lithium-ion power batteries for electric vehicles. international Journal of Chemical Engineering and Applications, 12(4), 283–289.
  • 20. Xiao W. L., Zheng Y. J., He H. B. 2020. Cascade extraction of lithium in anode of waste lithium ion battery. Chinese Journal of Rare Metals, 44(10), 1078.
  • 21. Xing K., Zhu Q., Ren J., Zou X., Niu M., Liu J., Xiao Y. 2023. Analysis of global lithium resources characteristics and market development trend. Geological Bulletin of China, 42(8), 1402–1421.
  • 22. Xu J., Thomas H.R., Francis R.W., Lum K.R., Wang J., Liang B. 2008. A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources, 177(2), 512–527.
  • 23. Yu H., Wang S., Li Y., Qiao Q., Wang K., Li X. 2022. Recovery of cobalt from spent lithium-ion battery cathode materials by using choline chloride-based deep eutectic solvent. Green Processing and Synthesis, 11(1), 868–874.
  • 24. Zeng G., Deng X., Luo S., Luo X., Zou J. 2012. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. Journal of hazardous materials, 199, 164–169.
  • 25. Zeng S. 2022. Analysis of the recycling of power batteries of new energy vehicles based on the perspective of circular economy. China Resources Comprehensive Utilization, 40(12), 94–96.
  • 26. Zhang N., Deng T., Zhang S., Wang C., Chen L., Wang C., Fan X. 2022. Critical review on low‐temperature Li‐ion/metal batteries. Advanced Materials, 34(15), 2107899.
  • 27. Zhong X., Han J., Mao X., Chen L., Chen M., Zhu H., Zeng H., Qin W. 2022. Innovative methodology for green recycling of spent lithium-ion batteries: Effective pyrolysis with DMF. Journal of Cleaner Production, 377, 134503.
  • 28. Zhu G., Wen K., Lv W., Zhou X., Liang Y., Yang F., He W. 2015. Materials insights into low-temperature performances of lithium-ion batteries. Journal of Power Sources, 300, 29–40.
  • 29. Zou H., Gratz E., Apelian D., Wang Y. 2013. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chemistry, 15(5), 1183–1191.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afd7905b-98dc-43e0-8214-60c7742a9392
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.