PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cross-sectional SWOT Analysis of BIM and GIS Integration

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The integration of BIM (Building Information Modeling) and GIS (Geographic Information System) technologies allows for added value in many fields; starting from the construction industry to administrative operations. However, the issue of integration is currently quite challenging. This is due to the lack of consistency (inter alia, a lack of standards) in the integration of both technologies. It is the result of the different primary use of BIM and GIS. The use of BIM and GIS integration has great potential, especially in the construction industry. Therefore, it was decided to analyze the strengths and weaknesses of integration as well as the opportunities and threats in the future by performing a SWOT analysis. The analysis was performed cross-sectionally based mainly on the existing literature. Finally, six strengths, five weaknesses, five opportunities, and four threats were identified and described.
Słowa kluczowe
EN
Rocznik
Strony
157--183
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
  • AGH University of Science and Technology, Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, Department of Engineering Surveying and Civil Engineering
Bibliografia
  • 1. McKinsey Global Institue: Reinventing Construction: A Route to Higher Productivity. 2017. https://doi.org/10.30875/b49c5f82-en.
  • 2. McKinsey & Company: The next normal in construction. June 2020. https://www.mckinsey.com/~/media/McKinsey/Industries/Capital%20Projects%20and%20Infrastructure/Our%20Insights/The%20next%20normal%20in%20construction/The-next-normal-in-construction.pdf [access: 7.08.2021].
  • 3. Milnes C., Aellig P., Gaullier N., Schneider-Roos K., Huber D., Wiener D., Guldimann R.: Global Infrastructure Basel: 4th GIB Summit, 21–22 May: Report. Global Infrastructure Basel Foundation, Basel, Switzerland 2014. https://gib-foundation.org/wp-content/uploads/2020/01/Summit-Report_ext_Fin_sml.pdf [access: 7.08.2021].
  • 4. Grieves M.: Digital Twin : Manufacturing Excellence through Virtual Factory Replication. A Whitepaper by Dr. Michael Grieves. 2014. https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication [access: 7.08.2021].
  • 5. Tchana Y., Ducellier G., Remy S.: Designing a unique Digital Twin for linear infrastructures lifecycle management. Procedia CIRP, vol. 84, 2019, pp. 545–549. https://doi.org/10.1016/j.procir.2019.04.176.
  • 6. Wei J., Chen G., Huang J., Xu L., Yang Y., Wang J., Sadick A.-M.: BIM and GIS applications in Bridge Rrojects: A Critical Review. Applied Sciences (Switzerland), vol. 11, no. 13, 2021, 6207. https://doi.org/10.3390/app11136207.
  • 7. Noardo F., Harrie L., Arroyo Ohori G.A.K., Biljecki F., Ellul C., Krijnen T.F., Eriksson H. et al.: Tools for BIM-GIS integration (IFC georeferencing and conversions): Results from the GeoBIM benchmark 2019. ISPRS International Journal of Geo-Information, vol. 9, no. 9, 2020, 502. https://doi.org/10.3390/ijgi9090502.
  • 8. Biljecki F., Tauscher H.: Quality of BIM-GIS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-4/W8, 2019, pp. 35–42. https://doi.org/10.5194/isprs-annals-IV-4-W8-35-2019.
  • 9. Zlatanova S., Isikdag U.: A SWOT analysis on the implementation of Building Information Models within the geospatial environment. [in:] Krek A., Rumor M., Zlatanova S., Fendel E.M. (eds.), Urban and Regional Data Management, CRC Press, London 2009. https://doi.org/10.1201/9780203869352-5.
  • 10. Liu X., Wang X., Wright G., Cheng J., Li X., Liu R.: A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS International Journal of Geo-Information, vol. 6, no. 2, 2017, 53. https://doi.org/10.3390/ijgi6020053.
  • 11.Azhar S., Hein M., Sketo B.: Building Information Modeling (BIM): Benefits, Risks and Challenges. [in:] Proceedings of the 44th General Meeting of ASC National Conference 2–5 April, 2008, Auburn 2008.
  • 12. May A.I., Taylor M., Irwin D.: Crossrail : A Case Study in BIM. 2017. https://www.ethz.ch/content/dam/ethz/special-interest/baug/igt/tunneling-dam/kolloquien/2016/May_Crossrail_BIM_Implementierung_ohne_Risiko.pdf [access: 20.08.2021].
  • 13. ISO 19650-1:2018: Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM) – Information management using building information modelling – Part 1: Concepts and principles. International Organization for Standardization, Geneva. https://www.iso.org/standard/68078.html [access: 25.08.2021].
  • 14. Karan E.P., Irizarry J., Haymaker J.: BIM and GIS Integration and Interoperability Based on Semantic Web Technology. Journal of Computing in Civil Engineering, vol. 30, no. 3, 2016, 04015043. https://doi.org/10.1061/(asce)cp.1943-5487.0000519.
  • 15. Ghaffarianhoseini A., Tookey J., Ghaffarianhoseini A., Naismith N., Azhar S., Efimova O., Raahemifar K.: Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renewable and Sustainable Energy Reviews, vol. 75, 2017, pp. 1046–1053. https://doi.org/10.1016/j.rser.2016.11.083.
  • 16. Sacks R., Eastman C., Lee G., Teicholz P.: BIM Handbook. John Wiley & Sons Hoboken, New Jersey 2018. https://doi.org/10.1002/9781119287568.
  • 17. ISO 16739-1:2018: Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries – Part 1: Data schema. International Organization for Standardization, Geneva. https://www.iso.org/standard/70303.html [access: 20.08.2021].
  • 18. Floros G.S., Boyes G., Owens D., Ellul C.: Developing IFC for infrastructure: A case study of three highway entities. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-4-W8, 2019, pp. 59–66. https://doi.org/10.5194/isprs-annals-IV-4-W8-59-2019.
  • 19. Floros G.S., Ruff P., Ellul C.: Impact of information management during Design&Construction on downstream BIM-GIS Interoperability for rail infrastructure. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. VI-4-W1, pp. 61–68, 2020. https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-61-2020.
  • 20. Garramone M., Moretti N., Scaioni M., Ellul C., Re Cecconi F., Dejaco M.C.: BIM and GIS integration for infrastructure asset management: A bibliometric analysis. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. VI-4-W1, 2020, pp. 77–84. https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-77-2020.
  • 21. BuildingSMART International: IFC Schema Specifications. https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ [access: 3.09.2021].
  • 22. Thurgood J.D., Bethel J.S.: Geographic Information Systems. [in:] Chen W.F., Richard Liew J.Y. (eds.), Civil Engineering Handbook, 2nd ed., CRC Press, Boca Raton 2003. https://doi.org/10.1201/9781420041217.
  • 23. Open Geospatial Consortium: CityGML. https://www.ogc.org/standards/citygml [access: 28.09.2021].
  • 24. El-Mekawy M., Östman A.: Semantic Mapping: an Ontology Engineering Method for Integrating Building Models in IFC and CITYGML. [in:] Proceedings 3rd ISDE Digital Earth Summit, 12–14 June, 2010, Nessebar, Bulgaria, Sofia, Bulgaria 2010. https://www.cartography-gis.com/pdf/32_El-Mekawy_Sweden_paper.pdf [access: 30.09.2021].
  • 25. Jayaraj P., Ramiya A.M.: 3D CityGML building modelling from lidar point cloud data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, vol. XLII-5, 2018, pp. 175–180. https://doi.org/10.5194/isprs-archives-XLII-5-175-2018.
  • 26. Chen Q., Chen J., Huang W.: Method for generation of indoor GIS models based on BIM models to support adjacent analysis of indoor spaces. ISPRS International Journal of Geo-Information, vol. 9, no. 9, 2020, 508. https://doi.org/10.3390/ijgi9090508.
  • 27. Biljecki F., Kumar K., Nagel C.: CityGML Application Domain Extension (ADE): overview of developments. Open Geospatial Data, Software and Standards, vol. 3, no. 1, 2018, 13. https://doi.org/10.1186/s40965-018-0055-6.
  • 28. Zhang S., Hou D., Wang C., Pan F., Yan L.: Integrating and managing BIM in 3D webbased GIS for hydraulic and hydropower engineering projects. Automation in Construction, vol. 112, 2020, 103114. https://doi.org/10.1016/j.autcon.2020.103114.
  • 29. Zhao L., Liu Z., Mbachu J.: Highway alignment optimization: An integrated BIM and GIS approach. ISPRS nternational Journal of Geo-Information, vol. 8, no. 4, 2019, 172. https://doi.org/10.3390/ijgi8040172.
  • 30. Akob Z., Abang Hipni M.Z., Abd Razak A.A.A.: Deployment of GIS + BIM in the construction of Pan Borneo Highway Sarawak, Malaysia. IOP Conference Series: Materials Science and Engineering, vol. 512, 2019, 012037. https://doi.org/10.1088/1757-899X/512/1/012037.
  • 31. Khan M.S., Park J., Seo J.: Geotechnical property modeling and construction safety zoning based on gis and bim integration. Applied Sciences (Switzerland), vol. 11, no. 9, 2021, 4004. https://doi.org/10.3390/app11094004.
  • 32. Wang M., Deng Y., Won J., Cheng J.C.P.: An integrated underground utility management and decision support based on BIM and GIS. Automation in Construction, vol. 107, 2019, 102931. https://doi.org/10.1016/j.autcon.2019.102931.
  • 33. Marzouk M., Othman A.: Planning utility infrastructure requirements for smart cities using the integration between BIM and GIS. Sustainable Cities and Society, vol. 57, 2020, 102120. https://doi.org/10.1016/j.scs.2020.102120.
  • 34. Peng S., Su G., Chen J., Du P.: Design of an IoT-BIM-GIS Based Risk Management System for Hospital Basic Operation. [in:] 2017 11th IEEE Symposium on Service-Oriented System Engineering (SOSE), IEEE, Piscataway 2017, pp. 69–74. https://doi.org/10.1109/SOSE.2017.22.
  • 35. Rafiee A., Dias E., Fruijtier S., Scholten H.: From BIM to Geo-analysis: View Coverage and Shadow Analysis by BIM/GIS Integration. Procedia Environmental Sciences, vol. 22, 2014, pp. 397–402. https://doi.org/10.1016/j.proenv.2014.11.037.
  • 36. Amirebrahimi S., Rajabifard A., Mendis P., Ngo T.: A framework for a microscale flood damage assessment and visualization for a building using BIM–GIS integration. International Journal of Digital Earth, vol. 9, no. 4, 2016, pp. 363–386. https://doi.org/10.1080/17538947.2015.1034201.
  • 37. Yan J., Zlatanova S., Diakité A.: A unified 3D space-based navigation model for seamless navigation in indoor and outdoor. International Journal of Digital Earth, vol. 14, no. 8, 2021, pp. 985–1003. https://doi.org/10.1080/17538947.2021.1913522.
  • 38. Tarihmen B., Diyarbakirli B., Kanbur M.O., Demirel H.: Indoor navigation system of faculty of civil engineering, ITU: A BIM approach. Baltic Journal of Modern Computing, vol. 8, no. 2, 2020, pp. 359–369. https://doi.org/10.22364/BJMC.2020.8.2.11.
  • 39. van den Brink L., Stoter J., Zlatanova S.: Establishing a national standard for 3D topographic data compliant to CityGML. International Journal of Geographical Information Science, vol. 27, no. 1, 2013, pp. 92–113. https://doi.org/10.1080/13658816.2012.667105.
  • 40. Noardo F., Ellul C., Harrie L., Overland I., Shariat M., Arroyo Ohori K., Stoter J.: Opportunities and challenges for GeoBIM in Europe: developing a building permits use-case to raise awareness and examine technical interoperability challenges. Journal of Spatial Science, vol. 65, no. 2, 2020, pp. 209–233. https://doi.org/10.1080/14498596.2019.1627253.
  • 41. Noardo F., Malacarne G., Mastrolembo Ventura S., Tagliabue L.C., Ciribini A.L.C., Ellul C., Guler D. et al.: Integrating expertises and ambitions for data-driven digital building permits – The EUNET4DBP. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, vol. XLIV-4-W1, 2020, pp. 103–110. https://doi.org/10.5194/isprs-archives-XLIV-4-W1-2020-103-2020.
  • 42. Isikdag U.: BIM and IoT: A synopsis from GIS perspective. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, vol. XL-2-W4, 2015, pp. 33–38. https://doi.org/10.5194/isprsarchives-XL-2-W4-33-2015.
  • 43. Jusuf S.K., Mousseau B., Godfroid G., Soh J.H.V.: Path to an Integrated Modelling between IFC and CityGML for Neighborhood Scale Modelling. Urban Science, vol. 1, no. 3, 2017, 25. https://doi.org/10.3390/urbansci1030025.
  • 44. Mignard C., Nicolle C.: Merging BIM and GIS using ontologies application to Urban facility management in ACTIVe3D. Computers in Industry, vol. 65, no. 9, 2014, pp. 1276–1290. https://doi.org/10.1016/j.compind.2014.07.008.
  • 45. Yamamura S., Fan L., Suzuki Y.: Assessment of Urban Energy Performance through Integration of BIM and GIS for Smart City Planning. Procedia Engineering, vol. 180, 2017, pp. 1462–1472. https://doi.org/10.1016/j.proeng.2017.04.309.
  • 46. Asgari Siahboomy M., Sarvari H., Chan D.W.M., Nassereddine H., Chen Z.: A multi-criteria optimization study for locating industrial warehouses with the integration of BIM and GIS data. Architectural Engineering and Design Management, vol. 17, no. 5–6, 2021, pp. 478–495. https://doi.org/10.1080/17452007.2021.1881880.
  • 47. Amirebrahimi S., Rajabifard A., Mendis P., Ngo T.D.: A data model for integrating GIS and BIM for assessment and 3D visualisation of flood damage to building. CEUR Workshop Proceedings, vol. 1323, 2015, pp. 78–89.
  • 48. Irizarry J., Karan E.P.: Optimizing location of tower cranes on construction sites through GIS and BIM integration. Electronic Journal of Information Technology in Construction, vol. 17, 2012, pp. 351–366.
  • 49. Gürel E., Tat M.: SWOT Analysis: A Theoretical Review. The Journal of International Social Research, vol. 10, no. 51, 2017, pp. 994–1004.
  • 50. Ghazinoory S., Abdi M., Azadegan-Mehr M.: SWOT Methodology: A Stateof-the-Art Review for the Past, A Framework for the Future. Journal of Business Economics and Management, vol. 12, no. 1, 2011, pp. 24–48. https://doi.org/10.3846/16111699.2011.555358.
  • 51. Zima K., Plebankiewicz E., Wieczorek D.: A SWOT analysis of the use of BIM technology in the polish construction industry. Buildings, vol. 10, no. 1, 2020, 16. https://doi.org/10.3390/buildings10010016.
  • 52. Li Z., Guo F., Schaefer D.: SWOT analysis for using bim for infrastructure across the whole lifecycle of transportation projects. [in:] Papadikis K., Chin C.S., Galobardes I., Gong G., Guo F. (eds.), Sustainable Buildings and Structures: Building a Sustainable Tomorrow: Proceedings of the 2nd International Conference in Sutainable Buildings and Structures (ICSBS 2019), October 25–27, 2019, Suzhou, China, CRC Press, London 2020, pp. 351–359. https://doi.org/10.1201/9781003000716-48.
  • 53. Khan A., Sepasgozar S., Liu T., Yu R.: Integration of BIM and immersive technologies for AEC: A scientometric-SWOT analysis and critical content review. Buildings, vol. 11, no. 3, 2021, 126. https://doi.org/10.3390/buildings11030126.
  • 54. AlSaggaf A., Jrade A.: ArcSPAT: an integrated building information modeling (BIM) and geographic information system (GIS) model for site layout planning. International Journal of Construction Management, 2021, pp. 1–25. https://doi.org/10.1080/15623599.2021.1894071.
  • 55. Zhong H.B., Hao P.W.: Visible Project Management System for Highway Construction Based on 3D Virtual Reality and Information Technology. Advanced Materials Research, vol. 1030–1032, no. 6, 2014, pp. 2170–2177. https://doi.org/10.4028/www.scientific.net/AMR.1030-1032.2170.
  • 56. Irizarry J., Karan E.P., Jalaei F.: Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Automation in Construction, vol. 31, 2013, pp. 241–254. https://doi.org/10.1016/j.autcon.2012.12.005.
  • 57. Deng Y., Gan V.J.L., Das M., Cheng J.C.P., Anumba C.: Integrating 4D BIM and GIS for Construction Supply Chain Management. Journal of Construction Engineering and Management, vol. 145, no. 4, 2019, pp. 1–15. https://doi.org/10.1061/(asce)co.1943-7862.0001633.
  • 58. Wang A., Wang N., Li K., Ren F.: Preliminary study on the integration control platform of construction waste based on ‘BIM+GIS’ technology. E3S Web of Conferences, vol. 237, 2021, 01034. https://doi.org/10.1051/e3sconf/202123701034.
  • 59. Ismail M.H., Ishak S.S.M., Osman M.: Role of BIM+GIS checker for improvement of technology deployment in infrastructure projects. IOP Conference Series: Materials Science and Engineering, vol. 512, 2019, 012038. https://doi.org/10.1088/1757-899X/512/1/012038.
  • 60. Kurwi S., Demian P., Blay K.B., Hassan T.M.: Collaboration through Integrated BIM and GIS for the Design Process in Rail Projects: Formalising the Requirements. Infrastructures, vol. 6, no. 4, 2021, 52. https://doi.org/10.3390/infrastructures6040052.
  • 61. Liu A.H., Ellul C., Swiderska M.: Decision making in the 4th dimension – Exploring use cases and technical options for the integration of 4D BIM and GIS during construction. ISPRS International Journal of Geo-Information, vol. 10, no. 4, 2021, 203. https://doi.org/10.3390/ijgi10040203.
  • 62. Wu B., Zhang S.: Integration of GIS And BIM for indoor geovisual analytics. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, vol. XLI-B2, 2016, pp. 455–458. https://doi.org/10.5194/isprsarchives-XLI-B2-455-2016.
  • 63. Deng Y., Cheng J.C.P., Anumba C.: A framework for 3D traffic noise mapping using data from BIM and GIS integration. Structure and Infrastructure Engineering, vol. 12, no. 10, 2016, pp. 1267–1280. https://doi.org/10.1080/15732479.2015.1110603.
  • 64. Floros G.S., Ellul C.: Loss of Information during Design & Construction for Highways Asset Management: A GeoBIM Perspective. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. VIII-4-W2, 2021, pp. 83–90. https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-83-2021.
  • 65. Jaud Š., Donaubauer A., Heunecke O., Borrmann A.: Georeferencing in the context of building information modelling. Automation in Construction, vol. 118, 2020, 103211. https://doi.org/10.1016/j.autcon.2020.103211.
  • 66. Clemen Ch., Görne H.: Level of Georeferencing (LoGeoRef) using IFC for BIM. Journal of Geodesy, Cartography and Cadastre, no. 10, 2019, pp. 15–20.
  • 67. Wang H., Pan Y., Luo X.: Integration of BIM and GIS in sustainable built environment: A review and bibliometric analysis. Automation in Construction, vol. 103, 2019, pp. 41–52. https://doi.org/10.1016/j.autcon.2019.03.005.
  • 68. Introducing ArcGIS GeoBIM. https://storymaps.arcgis.com/stories/1a41c0147d5a4df4af50d1f520e2ceac [access: 19.09.2021].
  • 69. Glinka S., Owerko T., Tomaszkiewicz K., Using Open Vector-Based Spatial Data to Create Semantic Datasets for Building Segmentation for Raster Data. Remote Sensing, vol. 14, no. 12, 2022, 2745. https://doi.org/10.3390/rs14122745.
  • 70. von Knippenberg L.: Open Data Maturity Report 2020. Publications Office of the European Union, Luxembourg 2020. https://doi.org/10.2830/619187.
  • 71. ISO/TR 23262:2021: GIS (geospatial) / BIM interoperability. International Organization for Standardization, Geneva 2021. https://www.iso.org/obp/ui/#iso:std:iso:tr:23262:ed-1:v1:en [access: 20.09.2021].
  • 72. ISO/TS 19166:2021: Geographic information – BIM to GIS conceptual mapping (B2GM). International Organization for Standardization, Geneva 2021. https://www.iso.org/standard/78899.html [access: 20.09.2021].
  • 73. Gilbert T., Rönsdorf C., Plume J., Simmons S., Nisbet N., Gruler H., Kolbe T.H. et al.: Built environment data standards and their integration: an analysis of IFC, CityGML and LandInfra. 2020. https://www.buildingsmart.org/buildingsmart-international-bsi-and-open-geospatial-consortium-ogc-release-bim-and-gis-integration-paper/ [access: 15.08.2021].
  • 74. International Organization for Standardization (ISO): GIS-BIM interoperability. 2021.05.24. https://committee.iso.org/sites/tc211/home/standards-in-action/news/2021-05-24-gis-bim-interoperabil.html [access: 20.08.2021].
  • 75. Sun J., Mi S., Olsson P.O., Paulsson J., Harrie L.: Utilizing BIM and GIS for Representation and Visualization of 3D Cadastre. ISPRS International Journal of Geo-Information, vol. 8, no. 11, 2019, 503. https://doi.org/10.3390/ijgi8110503.
  • 76. Hajji R., Yaagoubi R., Meliana I., Laafou I., El Gholabzouri A.: Development of an Integrated BIM-3D GIS Approach for 3D Cadastre in Morocco. ISPRS International Journal of Geo-Information, vol. 10, no. 5, 2021, 351. https://doi.org/10.3390/ijgi10050351.
  • 77. Gotlib D., Karabin M.: Integration of Models of Building Interiors with Cadastral Data. Reports on Geodesy and Geoinformatics, vol. 104, no. 1, 2017, pp. 91–102. https://doi.org/10.1515/rgg-2017-0018.
  • 78. UN-GGIM, WFEO, WGIC: White Paper: The value of Integrated Geospatial and Building Information Modelling (BIM) solutions to advance the United Nations Sustainable Development Goals (Agenda 2030) with specific focus on resilient infrastructure. 2020. http://www.wfeo.org/wfeo-wgic-unggim-white-paper-geospatial-engg-sustainable-development/ [access: 5.10.2021].
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afd6f825-d1b4-4874-bb84-2d5190daaa6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.