
Scientific Journals 	 Zeszyty Naukowe
of the Maritime University of Szczecin	 Akademii Morskiej w Szczecinie

68	 Scientific Journals of the Maritime University of Szczecin 46 (118)

2016, 46 (118), 68–75
ISSN 1733-8670 (Printed)	 Received: 	 31.08.2015
ISSN 2392-0378 (Online)	 Accepted: 	 06.05.2016
DOI: 10.17402/120	 Published:	 27.06.2016

Internet application to support yacht navigation

Daniel Dakus, Artur Zacniewski
Polish Naval Academy, Faculty of Navigation and Naval Weapons
69 Śmidowicza St., 81-103 Gdynia, Poland
e-mails: dax0000@gmail.com, a.zacniewski@amw.gdynia.pl
 corresponding author

Key words: internet application, yacht navigation, sea monitoring, AIS, geolocation, ruby on rails

Abstract
The article presents the implementation of an Internet application that graphically depicts the current situation
at sea, with the prospect of being used in maritime applications and the possibility to work on multiple hardware
platforms. Modern techniques have been applied in order to allow permanent development of the application
and ensure that it is maintenance-free and self-reliant, even in case of unexpected situations. This publication
covers the procedure followed to build the application as well as its field and method of operation. Possible
usages of the application and tests carried out on many platforms have been presented. Ideas for further devel-
opment have also been introduced.

Introduction

Is there a web application that combines geoloca-
tion features, safety, and sea monitoring for assisted
navigation?

Many web sites keep track of ships, monitor
the weather, and share electronic maps. Unfortunate-
ly, most Internet services are unwilling to share data,
and therefore only disclose a preview of the infor-
mation or commercial material. Navigation requires
precision and accuracy, thus demanding the use
of more accurate, higher resolution, data. A review
of the available Internet applications, which assist
navigation and sea monitoring, has shown, among
other things, a market gap in applications that com-
bine multiple functions and layers of information,
such as geolocation, weather conditions, ship track-
ing, and navigation warnings.

On the basis of the above considerations, the
idea emerged of creating an application that gathers
in one place data coming from a variety of sourc-
es and displays up-to-date information on a map.
The application is intended to work on multitude
of hardware platforms, including mobile platforms.

Materials and methods

Ruby on Rails

Rails is a web application development frame-
work written in the Ruby language. It is designed to
facilitate web application programming by making
assumptions regarding the basic needs of a develop-
er. It allows to write less code while accomplishing
more than many other languages and frameworks
(Ruby on Rails guide, 2015).

Ruby on Rails significantly accelerates the cre-
ation of Internet applications because it applies the
scaffolding method. By merely providing short com-
mands, it is possible to generate the whole skeleton
of an application, creating the basis for further oper-
ation. Ruby on Rails includes everything needed to
create database-backed web applications according
to the Model-View-Controller (MVC) pattern (Ruby
on Rails API, 2015).

Rails is equipped with multiple, well known,
embedded libraries such as jQuery, which is a fast,
small, and feature-rich JavaScript library. It makes
HTML document traversal and renders manipulation,

Internet application to support yacht navigation

Zeszyty Naukowe Akademii Morskiej w Szczecinie 46 (118)	 69

event handling, animation, and Ajax much simpler.
In addition, an easy-to-use API works across a mul-
titude of browsers (jQuery, 2015).

The possibility of conducting unassisted updates
of selected libraries, or installing new ones, is envis-
ages. Rails also offers the opportunity to install
many external GEMs, which significantly expand
the framework capabilities and automate many cre-
ative processes. For example, Nokogiri GEM is an
HTML, XML, SAX, and Reader parser. Nokogiri’s
many features include the ability to search docu-
ments via XPath or CSS3 selectors (Nokogiri, 2015).

Google Maps API

The Google Maps APIs provide several ways
of embedding Google Maps into web pages, and
allow for either simple use or extensive customiza-
tion (Google developers, 2015).

Google Maps API uses several coordinate
systems:
•	 Latitude and longitude values, which uniquely

reference a point in the world (Google uses the
World Geodetic System WGS84 standard).

•	 World coordinates, which uniquely reference
a point on the map.

•	 Tile coordinates, which reference a specific tile on
the map at the specific zoom level.
Whenever the Maps API needs to translate a loca-

tion in the world to a location on a map (the screen),
it needs to first translate latitude and longitude
values into a “world” coordinate. This translation
is accomplished using a map projection. Google
Maps uses the Mercator projection for this purpose.
World coordinates in Google Maps are measured
from Mercator projection’s origin (the northwest
corner of the map at 180 degrees longitude and
approximately 85 degrees latitude) and increase in
the x direction towards the east (right) and in the y
direction towards the south (down). Since the basic
Mercator Google Maps tile is 256 x 256 pixels, the
usable world coordinate space is {0–256}, {0–256}
(Map types, 2015).

Tiles and pixels in Google Maps are numbered
starting from the same origin. For Google’s imple-
mentation of the Mercator projection, the origin tile
is always at the northwest corner of the map, with
x values increasing from west to east and y values
increasing from north to south (Figure 1). Tiles are
indexed using x, y coordinates from that origin. For
example, at zoom level 2, when the Earth is divid-
ed up into 16 tiles, each tile can be referenced by
a unique x, y pair (Map types, 2015).

Figure 1. Google Maps Mercator projection measurement
and tiles numbers (Map types, 2015)

HTML5 Geolocation API

The Geolocation API defines a high-level inter-
face for location information, associated only with
the device hosting the implementation, such as lati-
tude and longitude. The API itself is agnostic of the
underlying location information sources. Common
sources of location information include Global Posi-
tioning System (GPS) and location inferred from
network signals such as IP address, RFID, Wi-Fi and
Bluetooth MAC addresses, and GSM/CDMA cell
IDs, as well as user input (W3C, 2015). Example
of using this API in JavaScript code is presented on
Figure 2.

This specification is limited to providing a script-
ing API for retrieving geographic position informa-
tion associated with a hosting device. The geographic

Daniel Dakus, Artur Zacniewski

70	 Scientific Journals of the Maritime University of Szczecin 46 (118)

position information is provided in terms of World
Geodetic System coordinates WGS84 (W3C, 2015).

Data

Automatic identification systems

The Automatic Identification Systems (AIS) are
designed to be capable of automatically provid-
ing information about the ship they are mounted on
to other ships and to coastal authorities. AIS provide
information – including the ship’s identity, type, posi-
tion, course, speed, navigational status, and other
safety-related information – automatically to appro-
priately equipped shore stations, other ships and air-
craft (ITU, 2015).

AIS Database Management System receives the
NMEA O183 message, coded in accordance with
ITU-R M.1371 sent via Saab R4S transponder, and
then converts it to a readable XML file type format
(Figure 3). Further, the XML file is made available
to the Internet via a static HTTP server.

Figure 3. AIS data system architecture

Exemplary XML file with AIS data is presented
on Figure 4.

Meteorology / Weather
OpenWeatherMap API service provides many

kinds of weather maps including Precipitations,
Clouds, Pressure, Temperature, Wind, and many oth-
ers. Moreover, the service connects them to mobile
applications or web sites (OpenWeatherMap, 2015).

The weather data is collected from various weath-
er stations, located all over the world, through the
“protocol of weather station data transmission”, which
allows the transmission of one measurement. The
data is transmitted by HTTP POST request (Table 1).

HTTP basic authentication is used (OpenWeath-
erMap, 2015).

Table 1. Parameters that can be transmitted in POST
(if available)

Data – Name Unit
wind_dir – wind direction grad
wind_speed – wind speed m/s
temp – temperature grad C
humidity – relative humidity %
pressure – atmosphere pressure hPa
wind_gust – speed of wind gust m/s
rain_24h – rain in recent 24 h mm
rain_today – rain today mm
lat – latitude <lat>
long – longitude <lon>
alt – altitude m
name – station name <text>

Next, the collected data can be obtained in JSON
and XML formats. The search of weather data can be
conducted in different ways:
•	 by city name (by geocoding system to find cities

by name, country or zip-code);
•	 by geographic coordinates (The flexible algo-

rithm, or estimation; of weather calculation allows
to provide weather data not only for cities, but for
any geographic coordinate and to receive weather
forecast in any location on Earth);

•	 by city ID.
An examples of a request sent to http://api.open-

weathermap.org/data/2.5/weather?q=Gdynia,Poland
&lang=en& units=metric is presented on Figure 5.<markers>

<marker lat="54.387687" lon="18.666317" name=
"PIRAT USTKA " type="99" ais="261019170!0!

SPG2658!STATEK PASAZERSKI !29/07/2015
11:40!4.6!216.0!8!20!14!3!3!0.4!1440767118"/>

<marker lat="54.530155" lon="18.560113" name=
"LE QUY DON " type="36" ais="261031080!9728100!

SPG4220!GDYNIA !!5.4!352.8!0!33!34!4!6!4.3!1440767125"/>
<marker lat="54.530417" lon="18.535400" name=

"BULKERS ALESSIA " type="70" ais="247280600!
9473573!IBYP !GDYNIA !25/08/2015

00:30!0.0!196.0!5!150!30!10!20!9.3!1440767059"/>
</markers>

{"coord":{"lon":18.53,"lat":54.52},
"weather":[{"id":800,"main":"Clear","description":

"clear sky","icon":"01d"}],
"base":"cmc stations",
"main":{"temp":24.44,"pressure":1016,"humidity":56,

"temp_min":23, "temp_max":25.56},
"wind":{"speed":3.6,"deg":60},"clouds":{"all":0},"dt":1441020450,
"sys":{"type":1,"id":5349,"message":0.004,"country":

"PL","sunrise":1440993078,"sunset":1441042787},
"id":3099424,"name":"Gdynia","cod":200}

Figure 2. Example of requesting repeated position updates

Figure 4. XML file fragment with AIS data Figure 5. Response API in JSON data format

Internet application to support yacht navigation

Zeszyty Naukowe Akademii Morskiej w Szczecinie 46 (118)	 71

Navigational Warnings
Navigation Warnings are regularly updated by

the National Coordinator of Navigational Warnings
operator on duty. They are available on the Hydro-
graphic Office of the Polish Navy website in PDF
format (Table 2). Up-to-date warnings are uploaded in
separate panels, including: Local Warnings, Coastal
Warnings, Subarea Warnings (BHMW, 2015).

Table 2. Data in PDF file (BHMW, 2015)

Identyfikator
ostrzeżenia GV_ON_0002/2015

Ważne od 2015-01-07 10:24:17

Ogólny obszar ZATOKA GDAŃSKA

Dotyczy (treść)

W REJONIE PRZYBRZEŻNYM KĘPY
OKSYWSKIEJ NA POZYCJACH:
1) 54-33'26,03361'N I 018-33'35,77877'E
2) 54-33'26,52619'N I 018-33'26,99430'E
3) 54-33'18,85022'N I 018-33'36,57699'E
ZNAJDUJĄ SIĘ TRZY OBIEKTY
POCHODZENIA MILITARNEGO.
ZALECANA SZCZEGÓLNA OSTROŻNOŚĆ

Pozycja
geograficzna

Φ=54°33'26''N Λ=018°33'35''E
Φ=54°33'26''N Λ=018°33'27''E
Φ=54°33'18''N Λ=018°33'36''E

In consideration of the fact that the file is in PDF
format, as well as of the nature of the data that it
includes, and the capabilities of API Google, it is
currently not possible to transfer the data directly
from the PDF file to the map.

It is possible to convert the PDF file into JSON or
XML on the server with an appropriate script and to
place it on the map, however considering the limited

time span, the current data from the PDF file is placed
on an external server, where it is properly prepared
and saved in the .xml format beforehand. In the
authors’ opinion it would be much simpler to place
the navigation warnings in the XML format directly
on the HOPN (pol. BHMW) website.

XML data for one map marker is presented on
Figure 6.

<markers>
<marker
lat="54.547231"
lon="18.559938"
id="GV_ON_0002/2015"
msg="W REJONIE PRAWOBRZEŻNYM KĘPY OKSYWSKIEJ

NA POZYCJACH (THE COASTAL AREA KĘPA
OKSYWSKA IN POSITION):

1) 54-33'26,03361'N I 018-33'35,77877'E

2) 54-33'26,52619'N I 018-33'26,99430'E

3) 54-33'18,85022'N I 018-33'36,57699'E

ZNAJDUJĄ SIĘ TRZY OBIEKTY POCHODZENIA

MILITARNEGO (THERE ARE THREE OBJECTS OF
MILITARY ORIGIN).

ZALECANA SZCZEGÓLNA OSTROŻNOŚĆ (RECOMMENDED
SPECIAL CARE)"/>

</markers>

Figure 6. Converted XML Data for one map marker

Results

With the use of API Google Maps; Ruby on Rails
framework; and the collected data, namely AIS,
Geolocation, Meteorology, and Navigation Warn-
ings, the Internet application was created and made
available at http://enavi.herokuapp.com/ address.

Figure 7. Application with selected layers

Daniel Dakus, Artur Zacniewski

72	 Scientific Journals of the Maritime University of Szczecin 46 (118)

The application offers 5 layers, which enable the
choice of required data. When selecting either
a ship or the weather icon, detailed information is
displayed.

The application with selected layers: ships, navi-
gation warnings, current weather, pressure patterns,
and clouds, as well as displayed info boxes concern-
ing the selected ship is presented on Figure 7.

The innovativeness of the application lies in
the fact that it is completely automatic and mainte-
nance-free. This means that the operations of down-
loading data, converting it to the format required
by API Google Maps, and representing it on the
map, are conducted by the server. Data is updated
without refreshing the page and live streamed. This
was made possible by the use of AJAX, jQuery as
well as Nokogiri methods. Below, the most essen-
tial code blocks and their functions are depicted and
explained.

Ships (AIS data)

Code for analysis, parsing and rendering XML
file is presented on Figure 8.

Figure 8. A fragment of Ruby code: analysis, parsing and
rendering of XML file

The process begins by the opening of GeoAIS.
xml file, saved on the AMW server with the use
of Nokogiri. Next, the @ships array is declared,
to which the decoded information will be added in
the definition of the decode_ship(marker) method,
which was previously located with the use of XPath
in the opened XML file. The process is finalised by
rendering to the JSON form, which can be easily
read by AJAX (Figure 9).

[{"lat":"54.448583","lon":"18.577737", "name":"PIRAT
USTKA","type":"99","imo":"0","call":"SPG2658","dest":

"STATEK PASAZERSKI ","eta":"29/07/2015
11:40","speed":"0.0","course":"249.2","status":"8","length":

"20","width":"14","draft":"3","mtime":"3","type
_text":"Other","info_window":"Info statku\u003e/Nazwa (Name):

PIRAT USTKA\u003c/Kurs (Course):
249.2°\u003e/Prędkość (Speed): 0.0 kn\u003e/Typ (Type):

Other\u003c/Cel (Destination): STATEK PASAZERSKI"}]

Figure 9. A fragment of ships.json file

Xpath is a pseudo-language that describes how
to locate specific elements and attributes in an XML
document, treating that document as a logically
ordered tree (XPath, 2015).

The whole process is conducted in real time.
Additionally, the XML file reading has been secured
against exceptions, such as a missing file on the
server or a writing error. Behind this are Rails.cache
methods, as well as rescue exception handling,
which continue coding with the data saved in cache
after encountering an exception.

Displaying of the ships’ markers is conduct-
ed with the use of jQuery, AJAX, and Java Script
library of Google Maps API (Figure 10).

Figure 10. A fragment of JavaScript code that initiates the
map and reading the parameters

The initializer starts the map with a predefined
position, as required by the application. Next, the
getShips function is applied, which uses jQuery to
transfer an object to the AJAX method that contains
the following parameters: path to ships.json, async:
false, which means that AJAX will conduct the com-
mands in a predetermined order to prevent readings
of the map before ships markers have been read.
Data is saved as selectedLayers in JSON notation for
further use. The data fed is then placed on the map
using the changeShips and getShips functions.

The data is continuously updated with the setIn-
terval method, which reads and places the positions

Internet application to support yacht navigation

Zeszyty Naukowe Akademii Morskiej w Szczecinie 46 (118)	 73

on the map as well as ship parameters in the info
window every 20 seconds.

Weather Data

The “Navigation warnings” layer works similarly
to the code provided above, while weather, pressure
patterns, and clouds are processed in a completely
different manner, also due to the fact that data is pre-
sented in graphical form (Figure 11).

Figure 11. A fragment of JavaScript code, displaying Weath-
er and Clouds

After sending a query concerning the weather in
iterator locations to OpenWeatherMap API, data is
received in the JSON format, and is placed on the
map using a function that allows adding new mark-
ers. The requests of pressure patterns and clouds are
responded to directly by reading the current zoom
level and position. The complete section of map is
then downloaded in a .png graphic format and placed
on the map.

Geolocation & GPS Info

The location is obtained through the use of the
method depicted in the ‘Materials and methods’ sec-
tion; however, to display additional information con-
cerning geographic coordinates, speed, and heading it
is necessary to add appropriate attributes to the meth-
od navigator.geolocation.watchPosition(attribute).

The properties below are returned, if available
(Table 3).

The information from the attributes depicted
above is updated on an ongoing basis (Figure 12).

The watchPosition method enables to establish
a permanent location. Similarly to car navigation,
the map is always centred on the current position,
regardless of the map zoom level. This means that
the map follows each movement and each change of
position. Due to the impossibility of shifting the map
in the geolocation mode during movement, a button
with the clearWatch method, which stops the updat-
ing of positions and attributes, was introduced.

Discussion

The application has been tested using a desktop
computer, laptop, tablet, smartphone and Internet
access and has shown a satisfactory accuracy in
obtaining position, both at home, via IP address, and
outside, with the inbuilt GPS in mobile devices with
Firefox browser for Android.

The application may have issues with the
response speed of the navigation menu layout on
mobile devices with resolution lower than XGA;
however, the layout will be amended later on. Due
to the limited possibility of obtaining data, the range
of the application has been limited to the area of the
Gdansk Bay. The comparison of the application with
one of the major Internet services, marinetraffic.
com, has shown significant discrepancies in terms
of the precision of the position of the observed “Ste-
na Vision” ship (Figure 13).

The comparison has been conducted at virtual-
ly the same time (5 seconds time lapse), refreshing,
and zoom level 10 on both maps. The reference point
was taken to be the Hel and Navigation Aid: BY
HEL (Figure 14).

The conducted measurements have shown
a discrepancy of around 1417 m = 0.77 nm, which

Table 3. Attributes for watchPosition() method

Attribute Description
coords.latitude The latitude as a decimal number
coords.longitude The longitude as a decimal number
coords.heading The heading as degrees clockwise from

North
coords.speed The speed in meters per second

Figure 12. Result of the attributes

Daniel Dakus, Artur Zacniewski

74	 Scientific Journals of the Maritime University of Szczecin 46 (118)

constitutes an enormous difference. The measure-
ments have also been conducted on vesselfinder.
com, however the discrepancy was significantly
lower, reaching 450 m = 0.24 nm. The live observa-
tion mode in case of both services is limited, and the
markers have to be refreshed manually in order to
obtain current data.

Conclusions

The application may be used to assist in ama-
teur navigation and increase the safety in terms of
sailing courses, water sports, kite-surfing and other

sea activities. It may also be conditionally applied in
emergencies, such as in case of damage to the deck
GPS receiver, AIS-equipped system, and meteoro-
logical devices.

The starting development model allows modu-
larity, which means that it is possible to easily add
layers based on the existing solutions implemented
in the application (like Customizing, Sign up, Sign
in with user settings) as well as response speed for
mobile applications.

The development model to be implemented is:
•	 Adding detailed navigation maps, or maps more

oriented towards maritime navigation.

Figure 13. On the left – marinetraffic.com, on the right – enavi.herokuapp.com

Figure 14. Comparison through merging images

Internet application to support yacht navigation

Zeszyty Naukowe Akademii Morskiej w Szczecinie 46 (118)	 75

•	 Tracking and analysis/statistics of the travel routes
saved with GPS module.

•	 Creating tracking history of ships within the range
of the AIS system, movement analysis.

•	 The possibility to plan voyage, to draw routs and
save them in the database.

•	 Adding more layers, mash-ups with convenient
data/information.

Acknowledgments

We would like to thank Krzysztof Naus for shar-
ing the data from the AIS server located in the Polish
Naval Academy in Gdynia.

References

1.	BHMW (2015) Official Polish Navigation Warnings page
[Online] Available from: http://www.bhmw.mw.mil.pl/in-
dex.php?akcja=ostrzezenia [Accessed: May 16, 2016]

2.	Google developers (2015) Official Google maps dev FAQ
[Online] Available from: https://developers.google.com/
maps/faq [Accessed: May 16, 2016]

3.	ITU (2015) AIS technical specification [Online] Available
from: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-
M.1371-5-201402-I!!PDF-E.pdf [Accessed: May 16, 2016]

4.	jQuery (2015), official page of jQuery library, http://api.
jquery.com/ [Accessed: May 16, 2016]

5.	Map types (2015) Google Maps API JavaScript documen-
tation [Online] Available from: https://developers.google.
com/maps/documentation/javascript/maptypes [Accessed:
May 16, 2016]

6.	Nokogiri (2015) Official Nokogiri’s readme file [Online]
Available from: http://www.rubydoc.info/github/sparklemo-
tion/nokogiri [Accessed: May 16, 2016]

7.	OpenWeatherMap (2015) Official OpenWeatherMap wiki
[Online] Available from: http://bugs.openweathermap.org/
projects/api/wiki/Upload_api [Accessed: May 16, 2016]

8.	Ruby on Rails API (2015) Official page of Ruby on Rails
framework [Online] Available from: http://api.rubyonrails.
org/ [Accessed: May 16, 2016]

9.	Ruby on Rails guide (2015) Official page of Ruby on Rails
guide [Online] Available from: http://guides.rubyonrails.
org/getting_started.html [Accessed: May 16, 2016]

10.	W3C (2015) Geolocation API Specification [Online] Avail-
able from: http://dev.w3.org/geo/api/spec-source [Accessed:
May 16, 2016]

11.	XPath (2015), XPath wiki page [Online] Available from:
https://en.wikipedia.org/wiki/XPath [Accessed: May 16,
2016]

