PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ameloriate Effect of Glucose Monohydrate on Nicotine Sulfate-induced Toxicity and Teratogenicity in Xenopus embryos: an Experimental Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is well documented that nicotine causes low birth weight, preterm birth, pregnancy difficulties, lower fertility, inhibition of spermatogenesis, and decreased steroidogenesis and potassium channels conductance of Xenopus oocytes. Lung cancer is the most well-known adverse impact of nicotine. This work used a 96-hour FETAX test to examine how concurrent administration of glucose monohydrate modifies the effects of exposure to nicotine, nicotine sulfate, and/or glucose on ion channels and membrane potential in Xenopus leavis embryos at an early stage of development. In-vitro fertilised embryos were treated with nicotine and glucose alone or in combination for this aim, and the effects of those treatments were then assessed for potential teratogenic effects. At the conclusion of the FETAX technique, the ratios of healthy, abnormal, and dead embryos were calculated, and the length of embryos in each treatment group was assessed. The ratios of abnormal and dead embryos were considerably higher with nicotine treatment alone compared to controls. Compared to the results of the nicotine-alone treatment group, the ratio of aberrant embryos was marginally reduced by concurrent glucose and nicotine therapy. In contrast, the ratio of normal embryos was raised. Additionally, treatments with glucose, nicotine, and Nic+Glu significantly altered the resting membrane potentials of fertilised oocytes (p < 0.001). Our findings indicated that the simultaneous treatment groups that also received glucose had a protective impact on embryos. Such structured, more sophisticated research is required to confirm these findings.
Rocznik
Tom
Strony
265--273
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Department of Physiology, School of Medicine, Cukurova University, Adana, Türkiye
autor
  • Department of Biophysics, School of Medicine, Cukurova University, Adana, Türkiye
autor
  • Department of Medical Biology, School of Medicine, Artuklu University, Mardin, Türkiye
  • Department of Biostatistics, School of Medicine, Cukurova University, Adana, Türkiye
Bibliografia
  • American Society for Testing and Materials (ASTM International). Standard guide for conducting the frog embryo teratogenesis assay – Xenopus (FETAX). 2017 [cited 2022 Oct 27]. Available from: http://www.astm.org/e1439-98.html
  • Bébarová, M., Matejovič, P., Švecová, O., Kula, R., Šimurdová, M., Šimurda, J. (2017). Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine. Naunyn-Schmiedeberg's Archives of Pharmacology, 390, 471-481. https://doi.org/10.1007/s00210-017-1341-z
  • Becker, R.F., Martin, J.C. (1971). Vital Effects of Chronic Nicotine Absorption and Chronic Hypoxia Stress During Pregnancy and the Nursing Period. American Journal of Obstetric and Gynecology, 110(4), 522-533. https://doi.org/10.1016/0002-9378(71)90693-4
  • Boga, A., Emre, M., Sertdemir, Y., Akillioglu, K., Binokay, S., Demirhan, O. (2015). The effect of 900 and 1800 MHz gsm-like radiofrequency irradiation and nicotine sulfate administration on the embryonic development of Xenopus laevis. Ecotoxicology and Environmental Safety, 113, 378-390. https://doi.org/10.1016/j.ecoenv.2014.12.020
  • Canimoğlu, S., Rencüzoğullari, E. (2006). The Cytogenetic Effects of Food Sweetener Maltitol in Human Peripheral Lymphocytes. Drug and Chemical Toxicology, 29(3), 269-78. https://doi.org/10.1080/01480540600651600
  • Davis, G., Edwards, R., Hille, B., Lewis, J., Morgan, D., Raff, M., Roberts, K. (2002). Membrane transport of small molecules and the electrical properties of membranes. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, et al. (Ed), Molecular Biology of the Cell. 6th ed., New York, NY, USA: Garland Science; p. 597-641.
  • Dawson, D.A, Bantle J.A. (1987). Development of a reconstituted water medium and preliminary validation of the frog embryo teratogenesis assay – Xenopus (FETAX). Journal of Applied Toxicology, 7(4), 237-244. https://doi.org/10.1002/jat.2550070403
  • Demirhan, O., Demir, C., Tunç, E., Inandıklıoğlu, N., Sütcü, E., Sadıkoğlu, N., Ozcan B. (2011). The genotoxic effect of nicotine on chromosomes of human fetal cells: the first report described as an important study. Inhalation Toxicology, 23, 829-834. https://doi.org/10.3109/08958378.2011.617398
  • Eckstein, L.W., Shibley, Jr I.A., Pennington, J.S., Carver, F.M., Pennington, S.N. (1997). Changes in Brain Glucose Levels and Glucose Transporter Protein Isoforms in Alcohol-or Nicotine-Treated Chick Embryos. Developmental Brain Research, 103(1), 59-65. https://doi.org/10.1016/S0165-3806(97)00117-X
  • Eide, F.F., Eisenberg, S.R., Sanders, T.A. (2000). Electroporation-mediated gene transfer in free-swimming embryonic Xenopus laevis. FEBS Letter, 486, 29-32. https://doi.org/10.1016/s0014-5793(00)02124-4
  • Emre, M., Boğa, A., Cetiner, S., Tunc, E., Demirhan, O. (2021). The effects of exposure to 900 MHz radiofrequency radiation and nicotine on the apoptotic ratio of human fetal cells. Southeast European Journal of Immunology, 4, 1-7. https://doi.org/10.3889/seejim.2021.3249
  • Feng, J.H., Yan, Y.E., Liang, G., Liu, Y., Li, X., Zhang, B. (2014). Maternal and fetal metabonomic alterations in prenatal nicotine exposure-induced rat intrauterine growth retardation. Molecular and Cellular Endocrinology, 394, 59-69. https://doi.org/10.1016/j.mce.2014.06.016
  • Fort, D.J., Stover, E.L., Farmer, D.R., Lemen, J.K. (2000). Assessing the predictive validity of frog embryo teratogenesis assay-Xenopus (FETAX). Teratogenesis Carcinogenesis and Mutagenesis, 20, 87-98.
  • Hamirah, N.K., Kamsani, Y.S., Khan, N., Rahim, S.A., Rajikin, M.H. (2017). Effects of Nicotine and Tocotrienol-Rich Fraction Supplementation on Cytoskeletal Structures of Murine Pre-Implantation Embryos. Medical Science Monitor Basic Research, 23373-379. https://doi.org/10.12659/msmbr.905447
  • Hammer, T.R., Fischer, K., Mueller, M., Hoefer, D. (2011). Effects of cigarette smoke residues from textiles on fibroblasts, neurocytes and zebrafish embryos and nicotine permeation through human skin. International Journal of Hygiene and Environmental Health, 214, 384-391. https://doi.org/10.1016/j.ijheh.2011.04.007
  • Heart, E., Corkey, R.F., Wickstrom. J.D., Shirihai, O.S., Corkey, B.E. (2006). Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells. American Journal of Physiology-Endocrinology and Metabolism, 290, E143-E148. https://doi.org/10.1152/ajpendo.00216.2005.
  • IBM SPSS Statistics. IBM SPSS Statistics for Windows, Version 19.0 Armonk, NY: IBM Corp. 2010. [cited 2018 Oct 20] Available from: https://www.ibm.com/products/spss-statistics
  • Jeng, W., Loniewska, M.M., Wells, P.G. (2013). Brain glucose-6-phosphate dehydrogenase protects against endogenous oxidative DNA damage and neurodegeneration in aged mice. ACS Chemical Neuroscience, 4, 1123-1132. https://doi.org/10.1021/cn400079y
  • Kang, T., Zhao, S., Shi, L., Li, J. (2021). Glucose metabolism is required for oocyte maturation of zebrafish. Biochemical and Biophysical Research Communications, 559, 191-196. https://doi.org/10.1016/j.bbrc.2021.04.059
  • Kennedy, A.E., Kandalam, S., Olivares-Navarrete, R., Dickinson, A.J.G. (2017). E-Cigarette Aerosol Exposure Can Cause Craniofacial Defects in Xenopus laevis Embryos and Mammalian Neural Crest Cells. PLoS One, 12(9), e0185729. https://doi.org/10.1371/journal.pone.0185729.g004
  • Kirchick, H.J., Keyes, P.L., Frye, B.E. (1982). Restoration of the LH Surge and Ovulation by Insulin in Alloxan-Diabetic Immature Rats Treated with Pregnant Mare's Serum Gonadotrophin. Acta Endocrinologica (Copenhagen), 100, 266-73. https://doi.org/10.1530/acta.0.1000266
  • Kiselyov, K., Muallem, S. (2016). ROS and intracellular ion channels. Cell Calcium, 60, 108-114. https://doi.org/10.1016/j.ceca.2016.03.004
  • Korgun, E.T., Demir, R., Hammer, A., Dohr, G., Desoye, G., Skofitsch, G., Hahn, T. (2001). Glucose transporter expression in rat embryo and uterus during decidualisation, implantation, and early postimplantation. Biology of Reproduction, 65(5), 1364-70. https://doi.org/10.1095/biolreprod65.5
  • Lin, C., Yon, J.M., Jung, A.Y., Lee, JG, Jung, K.Y., Kang, J.K., Lee, Beom Jun., et al. (2012). Resveratrol prevents nicotine-induced teratogenesis in cultured mouse embryos. Reproductive Toxicology, 34(3), 340-346. https://doi.org/10.1016/j.reprotox.2012.05.097
  • Lin, C., Yon, J.M., Jung, Y.A., Lee, J.G., Jung, K.Y., Lee, B.J., et al. (2013). Antiteratogenic Effects of β-Carotene in Cultured Mouse Embryos Exposed to Nicotine. Evidence-based Complementary and Alternative Medicine, 2013, 575287. https://doi.org/10.1155/2013/575287
  • Lindi, C, Montorfano, G., Rossi, F., Montorfano, G., Rossi, R., Gornati, R., Rizzo, AM. (2001). Effect of ethanol exposure on Xenopus embryo lipid composition. Alcohol Alcohol, 36, 388-392. https://doi.org/10.1093/alcalc/36.5.388
  • Luck, W., Nau, H., Hansen, R., Steldinger, R. (1985). The extent of nicotine and cotinine transfer to the human fetus, placenta, and amniotic fluid of smoking mothers. Developmental Pharmacology and Therapeutics, 8, 384-395. https://doi.org/10.1159/000457063
  • Machaalani, R., Ghazav, E., Hinton, T.,Waters, K.A., Hennessy, A. (2014). Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta. Toxicology and Applied Pharmacology, 276(3), 204-212. https://doi.org/10.1016/j.taap.2014.02.015
  • Manos, P., Nakayama, R., Holten, D. (1991). Regulation of glucose-6-phosphate dehydrogenase synthesis and mRNA abundance in cultured rat hepatocytes. Biochemical Journal, 276, 245-250. https://doi.org/10.1042/bj2760245
  • Nelson, E.A., Taylor, B.J. (2001). International childcare practices study infant sleep position and parental smoking. Early Human Development, 64, 7-20. https://doi.org/10.1016/S0378-3782(01)00165-7
  • Nicol, C.J., Zielenski, J., Tsui, L.C., Wells, P.G. (2000). An embryo-protective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. The FASEB Journal, 14, 111-127. https://doi.org/10.1096/fasebj.14.1.111
  • Nieuwkoop, P.D., Faber, J. (1994). Normal table of Xenopus laevis (Daudin). Newyork&London: Garland Publishing.
  • Oyeyipo, I.P., Raji, Y., Emikpe, B.O., Bolarinwa, A.F. (2011). Effects of nicotine on sperm characteristics and fertility profile in adult male rats: a possible role of cessation. Journal of Reproduction & Infertility, 12(3), 201-7.
  • Pai, V.P., Lemire, J.M., Paré, J.F., Lin, G., Chen, Y., Levin, M. (2015). Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation. Journal of Neuroscience, 35, 4366-4385. https://doi.org/10.1523/JNEUROSCI.1877-14.2015
  • Poitout, V., Hagman, D., Stein, R., Artner, I., Robertson, P., Harmon, J.S. (2006). Regulation of the Insulin Gene by Glucose and Fatty Acids. The Journal of Nutrition, 136(4), 873-6. https://doi.org/10.1093/jn/136.4.873
  • Sundelacruz, S., Levin, M., Kaplan, D.L. (2009). Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Reviews and Reports, 5, 231-246. https://doi.org/10.1007/s12015-009-9080-2
  • Suzawa, K., Yukita, A., Hayata, T., Goto, T., Danno, H., Michiue, T., … Asashima, M. (2007). Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis. The International Journal of Developmental Biology, 51(3), 183-90. https://doi.org/10.1387/ijdb.062230ks
  • Stuart, G.J., Palmer, L.M. (2006). Imaging membrane potential in dendrites and axons of single neurons. Pflügers Archiv, 453, 403-410.
  • Teixidó, E., Piqué, E., Gómez-Catalán, J., Llobet, J.M. (2013). Assessment of developmental delay in the zebrafish embryo teratogenicity assay. Toxicology In Vitro, 27, 469-478. http://dx.doi.org/10.1016/j.tiv.2012.07.010
  • Torchinsky, A., Brokhman, I., Shepshelovich, J., Orenstein, H., Savion, S., Zaslavsky, Z, Koifman, M.,…Toder, V. (2003). Increased TNF- Expression in Cultured Mouse Embryos Exposed to Teratogenic Concentrations of Glucose. Reproduction, 125, 527-534. https://doi.org/10.1530/rep.0.1250527
  • Viñals, F., Gros, A., Testar, X., Palacı́n, M., Rösen, P., Zorzano, A. (1999). High Glucose Concentrations Inhibit Glucose Phosphorylation, but not Glucose Transport, in Human Endothelial Cells. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 1450(2), 119-129. https://doi.org/10.1016/s0167-4889(99)00035-x
  • Vismara, C., Battista, V.V., Vailati, G., Bacchetta, R. (2000). Paraquat induced embryotoxicity on Xenopus laevis development. Aquatic Toxicology, 49, 171-179. https://doi.org/10.1016/s0166-445x(99)00080-6
  • Yamaguchi, Y., Shinagawa, A. (1989). Marked alteration at midblastula transition in the effect of lithium on the formation of the larval body pattern of Xenopus laevis. Development, Growth & Differentiation, 31, 531-541. https://doi.org/10.1111/j.1440-169X.1989.00531.x
  • Yeh, G.C., Daschner, P.J., Lopaczynska, J., MacDonald, C.J., Ciolino, H.P. (2001). Modulation of glucose-6-phosphate dehydrogenase activity and expression is associated with aryl hydrocarbon resistance in vitro. Journal of Biological Chemistry, 276, 34708-34713. https://doi.org/10.1074/jbc.M105680200
  • Wang, H., Shi, H., Zhang, L., Pourrier, M., Yang, B., Nattel, S., Wang, Z. (2000). Nicotine is a potent blocker of the cardiac a-type (+) channels. Effects on cloned kv4.3 channels and native transient outward current. Circulation, 102, 1165-1171. https://doi.org/10.1161/01.cir.102.10.1165
  • Wickström, R. (2007). Effects of nicotine during pregnancy: human and experimental evidence. Current Neuropharmacology, 5, 213-222. https://doi.org/10.2174/157015907781695955
  • Zhu, M., Zernicka-Goetz, M. (2020). Living a sweet life: glucose instructs cell fate in the mouse embryo. Developmental Cell, 53, 1-2. https://doi.org/10.1016/j.devcel.2020.03.012
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afc84cfb-9ded-41f1-8a8f-2c0993b9bd00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.