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Adaptive backstepping control, synchronization and
circuit simulation of a 3-D novel jerk chaotic system

with two hyperbolic sinusoidal nonlinearities

SUNDARAPANDIAN VAIDYANATHAN, CHRISTOS VOLOS, VIET-THANH PHAM, KAVITHA MADHAVAN
and BABATUNDE A. IDOWU

In this research work, a six-term 3-D novel jerk chaotic system with two hyperbolic si-
nusoidal nonlinearities has been proposed, and its qualitative properties have been detailed.
The Lyapunov exponents of the novel jerk system are obtained as L1 = 0.07765,L2 = 0,
and L3 = −0.87912. The Kaplan-Yorke dimension of the novel jerk system is obtained as
DKY = 2.08833. Next, an adaptive backstepping controller is designed to stabilize the novel
jerk chaotic system with two unknown parameters. Moreover, an adaptive backstepping con-
troller is designed to achieve complete chaos synchronization of the identical novel jerk chaotic
systems with two unknown parameters. Finally, an electronic circuit realization of the novel
jerk chaotic system using Spice is presented in detail to confirm the feasibility of the theoretical
model.

Key words: chaos, jerk system, novel system, adaptive control, backstepping control,
chaos synchronization

1. Introduction

Chaos theory describes the qualitative study of unstable aperiodic behaviour in de-
terministic nonlinear dynamical systems. A chaotic system is mathematically defined as
a dynamical system with at least one positive Lyapunov exponent. In simple language,
a chaotic system is a dynamical system, which is very sensitive to small changes in the
initial conditions. Interest in nonlinear dynamics and in particular chaotic dynamics has
grown rapidly since 1963, when Lorenz published his numerical work on a simplified
model of convection and discussed its implications for weather prediction [1].
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Nonlinear dynamics occurs widely in engineering, physics, biology and many other
scientific disciplines [2]. Poincaré was the first to observe the possibility of chaos, in
which a deterministic system exhibits aperiodic behaviour that depends on the initial
conditions, thereby rendering long-term prediction impossible, since then it has received
much attention [3, 4].

Chaos has developed over time. For example, Ruelle and Takens [5] proposed a the-
ory for the onset of turbulence in fluids, based on abstract considerations about strange
attractors. Later, May [6] found examples of chaos in iterated mappings arising in popu-
lation biology. Feigenbaum [7] discovered that there are certain universal laws governing
the transition from regular to chaotic behaviours. That is, completely different systems
can go chaotic in the same way, thus, linking chaos and phase transitions.

One of the hallmarks of nonlinear dynamics is the concept of equilibrium, which
helps in characterizing a system’s behaviour - especially its long-term motion. There are
numerous types of equilibrium behaviour that can occur in continuous dynamical sys-
tems, but such long-time behaviours are restricted by the number of degrees-of-freedom
(that is, by the dimensionality) of the system. In order words, one ignores the transient
behaviour of a dynamical system and only considers the limiting behaviour as t → ∞.

Chaos is a kind of motion, which is erratic, but not simply quasiperiodic with large
number of periods [8]. Chaotic behaviour has been observed in driven acoustic sys-
tems, resonantly forced surface water, irradiated superconducting Josephson junction,
ac-driven diode circuits, driven piezoelectric resonators, periodically forced neural oscil-
lators, Ratchets, periodically modulated Josephson junction, the rigid body, gyroscopes,
etc. For the motion of a system to be chaotic, the system variables should contain non-
linear terms and it must satisfy three properties: boundedness, infinite recurrence and
sensitive dependence on initial conditions.

The study of chaos in the last decades had a tremendous impact on the foundations
of science and engineering and one of the most recent exciting developments in this
regard is the discovery of chaos synchronization, whose possibility was first reported by
Fujisaka and Yamada [9] and later by Pecora and Carroll [10].

Different types of synchronization such as complete synchronization [10], anti-
synchronization [11, 12, 13], hybrid synchronization [14, 15], lag synchronization [16],
phase synchronization [16, 17], anti-phase synchronization APS, generalized synchro-
nization [19], projective synchronization [20], generalized projective synchronization
[21, 22, 23], etc. have been studied in the chaos literature.

Since the discovery of chaos synchronization, different approaches have been pro-
posed to achieve it, such as PC method [10], active control method [24, 25, 26, 27],
adaptive control method [28, 29, 30, 31], backstepping control method [32, 33, 34, 35,
36, 37], sliding mode control method [38, 39, 40, 41, 42], etc.

The first famous chaotic system was accidentally discovered by Lorenz, when he was
deriving a mathematical model for atmospheric convection [43]. Subsequently, Rössler
discovered a chaotic system in 1976 [44], which is algebraically simpler than the Lorenz
system.
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Some well-known 3-D chaotic systems are Arneodo system [45], Sprott systems
[46], Chen system [47], Lü-Chen system [48], Liu system [49], Cai system [50],
T-system [51], etc. Many new chaotic systems have been also discovered like Li
system [52], Sundarapandian system [53], Vaidyanathan systems [54, 55, 56, 57],
Vaidyanathan-Madhavan system [58], Sundarapandian-Pehlivan system [59], Pehlivan-
Moroz-Vaidyanathan system [60], Jafari system [61], Pham system [62], etc.

In the recent decades, there is some good interest in finding novel chaotic systems,
which can be expressed by an explicit third order differential equation describing the
time evolution of the single scalar variable x given by

...x = j(x, ẋ, ẍ). (1)

The differential equation (1) is called “jerk system” because the third order time deriva-
tive in mechanical systems is called jerk. Thus, in order to study different aspects of
chaos, the ODE (1) can be considered instead of a 3-D system. Sprott’s work [46] on
jerk systems inspired Gottlieb [63] to pose the question of finding the simplest jerk func-
tion that generates chaos. This question was successfully answered by Sprott [64], who
proposed a jerk function containing just three terms with a quadratic nonlinearity:

j(x, ẋ, ẍ) =−Aẍ+ ẋ2 − x (with A = 2.017). (2)

Sprott showed that the jerk system with the jerk function (2) is chaotic with the Lyapunov
exponents L1 = 0.0550,L2 = 0 and L3 = −2.0720, and corresponding to Kaplan-Yorke
dimension of DKY = 2.0265.

In this paper, we propose a 3-D novel jerk chaotic system with two hyperbolic sinu-
soidal nonlinearities. First, we detail the fundamental qualitative properties of the novel
jerk chaotic system. We show that the novel chaotic system is dissipative and derive the
Lyapunov exponents and Kaplan-Yorke dimension of the novel jerk chaotic system.

Next, this paper derives an adaptive backstepping control law that stabilizes the novel
jerk chaotic system about its unique equilibrium point at the origin, when the system
parameters are unknown. The backstepping control method is a recursive procedure that
links the choice of a Lyapunov function with the design of a controller and guarantees
global asymptotic stability of strict feedback systems [65, 66, 67, 68].

This paper also derives an adaptive backstepping control law that achieves global
chaos synchronization of the identical 3-D novel jerk chaotic systems with unknown
parameters. All the main adaptive results in this paper are proved using Lyapunov sta-
bility theory. MATLAB simulations are depicted to illustrate the phase portraits of the
novel jerk chaotic system, dynamics of the Lyapunov exponents, adaptive stabilization
and synchronization results for the novel jerk chaotic system. Finally, an electronic cir-
cuit realization of the novel jerk chaotic system using Spice is presented to confirm the
feasibility of the theoretical model.
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2. A 3-D novel jerk chaotic system

Recently, there is some interest in finding chaotic jerk functions having the special
form ...x +Aẍ+ ẋ = G(x), (3)

where G is a nonlinear function having some special properties [69]. Such systems are
called as chaotic memory oscillators in the literature. In [70], Sprott has made an exhaus-
tive study on autonomous dissipative chaotic systems. Especially, Sprott has listed a set
of 16 chaotic memory oscillators (Table 3.3, p. 74, [70]), named as MO0,MO1, . . . ,MO15
with details of their Lyapunov exponents.

Sprott’s system, MO15 is given by the differential equation
...x +0.6ẍ+ ẋ = x−0.5sinh(x). (4)

It is convenient to express the Sprott ODE (4) in a system form as
ẋ1 = x2

ẋ2 = x3

ẋ3 = x1 −0.5sinh(x1)− x2 −0.6x3

(5)

which is a 3-D jerk chaotic system having six terms on the R.H.S. with one hyperbolic
sinusoidal nonlinearity.

We take the initial conditions for the Sprott system (5) as

x1(0) = 0.8, x2(0) = 1.2, x3(0) = 0.5. (6)

Then the Lyapunov exponents of the Sprott jerk system (5) are numerically obtained as

L1 = 0.0601, L2 = 0, L3 =−0.6571. (7)

Thus, the maximal Lyapunov exponent (MLE) of the Sprott jerk system (5) is L1 =
0.0601.

Fig. 1 depicts the strange attractor of the Sprott jerk system (5) for the initial condi-
tions (6).

In this work, we propose a new jerk system, which is given in a system form as
ẋ1 = x2

ẋ2 = x3

ẋ3 = x1 −a[sinh(x1)+ sinh(x2)]−bx3

(8)

where a and b are positive parameters. In this paper, we shall show that the system (8) is
chaotic when the parameters a and b take the values

a = 0.4 and b = 0.8. (9)
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Figure 1. Strange attractor of the Sprott jerk system

We note that both the Sprott jerk system (5) and the novel jerk system (8) contain the
same number of terms on the R.H.S. However, the two systems are not topologically
equivalent since we have replaced the linear term −x2 in the last equation of (5) with
a hyperbolic sinusoidal term, viz. −asinh(x2) with a > 0. As a consequence, the phase
portraits of the two jerk chaotic systems (5) and (8) will be different.

For the parameter values chosen in (9) and the initial conditions given in (6), the
Lyapunov exponents of the novel jerk chaotic system (8) are obtained as

L1 = 0.0777, L2 = 0, L3 =−0.8791. (10)

The above calculations show that the maximal Lyapunov exponent (MLE) of the novel
jerk chaotic system (8) is L1 = 0.0777, which is greater than the MLE of the Sprott jerk
system (5), viz. L1 = 0.0601.

For numerical simulations of the novel jerk chaotic system (8), we use the same
initial conditions (6), which were used for plotting the strange attractor of the Sprott jerk
system (5).

Fig. 2 depicts the chaotic attractor of the novel jerk system (8) in 3-D view, while
in Figs. 3-5, the 2-D projection of the strange chaotic attractor of the novel jerk chaotic
system (8) in (x1,x2),(x2,x3) and (x3,x1) planes, is shown, respectively.
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Figure 2. Strange attractor of the novel jerk system

3. Analysis of the 3-D novel jerk system

3.1. Dissipativity

In vector notation, the new jerk system (8) can be expressed as

ẋxx = f (xxx) =

 f1(x1,x2,x3)

f2(x1,x2,x3)

f3(x1,x2,x3)

 , (11)

where 
f1(x1,x2,x3) = x2

f2(x1,x2,x3) = x3

f3(x1,x2,x3) = x1 −a(sinh(x1)+ sinh(x2))−bx3.

(12)

Let Ω be any region in ℜ3 with a smooth boundary and also, Ω(t) = Φt(Ω), where
Φt is the flow of f . Furthermore, let V (t) denote the volume of Ω(t). By Liouville’s
theorem, we know that

V̇ (t) =
∫

Ω(t)

(∇ · f )dx1 dx2 dx3. (13)
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Figure 3. 2-D projection of the novel jerk system on (x1,x2)-plane
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Figure 4. 2-D projection of the novel jerk system on (x2,x3)-plane
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Figure 5. 2-D projection of the novel jerk system on (x3,x1)-plane

The divergence of the novel jerk system (11) is found as:

∇ · f =
∂ f1

∂x1
+

∂ f2

∂x2
+

∂ f3

∂x3
=−b < 0 (14)

since b is a positive parameter. Inserting the value of ∇ · f from (14) into (13), we get

V̇ (t) =
∫

Ω(t)

(−b)dx1 dx2 dx3 =−bV (t). (15)

Integrating the first order linear differential equation (15), we get

V (t) = exp(−bt)V (0). (16)

Since b > 0, it follows from Eq. (16) that V (t)→ 0 exponentially as t → ∞. This shows
that the novel 3-D jerk chaotic system (8) is dissipative. Hence, the system limit sets are
ultimately confined into a specific limit set of zero volume, and the asymptotic motion
of the novel jerk chaotic system (8) settles onto a strange attractor of the system.
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3.2. Equilibrium points

The equilibrium points of the 3-D novel jerk chaotic system (8) are obtained by
solving the equations

f1(x1,x2,x3) = x2 = 0
f2(x1,x2,x3) = x3 = 0
f3(x1,x2,x3) = x1 −a [sinh(x1)+ sinh(x2)]−bx3 = 0

 . (17)

We take the parameter values as in the chaotic case, viz. a = 0.4 and b = 0.8. Thus,
the equilibrium points of the system (8) are characterized by the equations

x1 −0.4sinh(x1) = 0, x2 = 0, x3 = 0. (18)

Solving the system (18), we get the equilibrium points of the system (8) as

E0 =

 0
0
0

 , E+ =

 2.5527
0
0

 and E− =

 −2.5527
0
0

 . (19)

To test the stability type of the equilibrium points E0,E+ and E−, we calculate the Jaco-
bian matrix of the novel jerk chaotic system (8) at any point xxx = xxx∗:

J (xxx∗) =

 0 1 0
0 0 1

1−0.4cosh(x1) −0.4cosh(x2) −0.8

 . (20)

We note that

J0
∆
= J(E0) =

 0 1 0
0 0 1

0.6 −0.4 −0.8

 (21)

which has the eigenvalues

λ1 = 0.5368, λ2,3 =−0.6684±0.8191i. (22)

This shows that the equilibrium point E0 is a saddle-focus point. Next, we note that

J+
∆
= J(E+) =

 0 1 0
0 0 1

−1.5839 −0.4 −0.8

 (23)

which has the eigenvalues

λ1,2 = 0.2805±1.0416i, λ3 =−1.3611. (24)
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This shows that the equilibrium point E+ is also a saddle-focus point. Since J(E−) =
J(E+), it is immediate that E− is also a saddle-focus point. Hence, the novel jerk chaotic
system (8) has three equilibrium points E0,E+,E− defined by (19), which are saddle-
foci.

3.3. Point reflection symmetry

We define a new set of coordinates as

ξ1 = −x1

ξ2 = −x2

ξ3 = −x3.

(25)

We find that

ξ̇1 = −x2 = ξ2

ξ̇2 = −x3 = ξ3

ξ̇3 = −x1 +asinh(x1)+asinh(x2)+bx3 = ξ1 −asinh(ξ1)−asinh(ξ2)−bξ3.

(26)

This calculation shows that the 3-D novel jerk chaotic system (8) is invariant under the
transformation of coordinates

(x1,x2,x3) 7→ (−x1,−x2,−x3). (27)

In mathematics, reflection through the origin refers to the point reflection of ℜn

across the origin of ℜn. Reflection through the origin is an orthogonal transformation
corresponding to scalar multiplication by −1, and can also be written as −I, where I is
the identity matrix. In ℜ3, the point reflection symmetry is characterized by (x1,x2,x3) 7→
(−x1,−x2,−x3). Thus, the novel jerk chaotic system (8) has point reflection symmetry
about the origin. Hence, it follows that any non-trivial trajectory of the novel jerk chaotic
system (8) must have a twin trajectory.

3.4. Lyapunov exponents and Kaplan-Yorke dimension

For the parameter values a = 0.4 and b = 0.8, the Lyapunov exponents are numeri-
cally obtained using MATLAB as

L1 = 0.0771, L2 = 0, L3 =−0.8791. (28)

Thus, the maximal Lyapunov exponent (MLE) of the novel jerk system (8) is positive,
which means that the system has a chaotic behavior. Since L1 +L2 +L3 =−0.082 < 0,
it follows that the novel jerk chaotic system (8) is dissipative. Also, the Kaplan-Yorke
dimension of the novel jerk chaotic system (8) is obtained as

DKY = 2+
L1 +L2

|L3|
= 2.0877, (29)

which is fractional.
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4. Adaptive control of the 3-D novel jerk chaotic system with unknown
parameters

In this section, we use backstepping control method to derive an adaptive feedback
control law for globally stabilizing the 3-D novel jerk chaotic system with unknown
parameters. Thus, we consider the 3-D novel jerk chaotic system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = x1 −a [sinh(x1)+ sinh(x2)]−bx3 +u

(30)

where a and b are unknown constant parameters, and u is a backstepping control law to
be determined using estimates â(t) and b̂(t) for a and b, respectively.

The parameter estimation errors are defined as:{
ea(t) = a− â(t)
eb(t) = b− b̂(t).

(31)

Differentiating (31) with respect to t, we obtain the following equations:{
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t).
(32)

Next, we shall state and prove the main result of this section.

Theorem 10 The 3-D novel jerk chaotic system (30), with unknown parameters a and
b, is globally and exponentially stabilized by the adaptive feedback control law,

u(t) =−4x1 −5x2 − (3− b̂(t))x3 + â(t) [sinh(x1)+ sinh(x2)]− kz3 (33)

where k > 0 is a gain constant,

z3 = 2x1 +2x2 + x3, (34)

and the update law for the parameter estimates â(t), b̂(t) is given by{
˙̂a(t) = −[sinh(x1)+ sinh(x2)]z3
˙̂b(t) = −x3z3.

(35)

Proof We prove this result via backstepping control method and Lyapunov stability
theory. First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (36)
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where z1 = x1. Differentiating V1 along the dynamics (30), we get

V̇1 = z1ż1 = x1x2 =−z2
1 + z1(x1 + x2). (37)

Now, we define
z2 = x1 + x2. (38)

Using (38), we can simplify the equation (37) as

V̇1 =−z2
1 + z1z2. (39)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)
. (40)

Differentiating V2 along the dynamics (30), we get

V̇2 =−z2
1 − z2

2 + z2(2x1 +2x2 + x3). (41)

Now, we define
z3 = 2x1 +2x2 + x3. (42)

Using (42), we can simplify the equation (41) as

V̇2 =−z2
1 − z2

2 + z2z3. (43)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,ea,eb) =V2(z1,z2)+
1
2

z2
3 +

1
2

e2
a +

1
2

e2
b (44)

which is a positive definite function on ℜ5. Differentiating V along the dynamics (30),
we get

V̇ =−z2
1 − z2

2 − z2
3 + z3(z3 + z2 + ż3)− ea ˙̂a− eb

˙̂b. (45)

Eq. (45) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 + z3S− ea ˙̂a− eb

˙̂b (46)

where
S = z3 + z2 + ż3 = z3 + z2 +2ẋ1 +2ẋ2 + ẋ3. (47)

A simple calculation gives

S = 4x1 +5x2 +(3−b)x3 −a[sinh(x1)+ sinh(x2)]+u. (48)

Substituting the adaptive control law (33) into (48), we obtain

S =−(a− â)[sinh(x1)+ sinh(x2)]− (b− b̂)x3 − kz3. (49)
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Using the definitions (32), we can simplify (49) as

S =−ea[sinh(x1)+ sinh(x2)]− ebx3 − kz3. (50)

Substituting the value of S from (50) into (46), we obtain

V̇ =−z1 − z2 − (1+ k)z2
3 + ea

[
−[sinh(x1)+ sinh(x2)]z3 − ˙̂a

]
+ eb

[
−x3z3 − ˙̂b

]
. (51)

Substituting the update law (35) into (51), we get

V̇ =−z2
1 − z2

2 − (1+ k)z2
3, (52)

which is a negative semi-definite function on ℜ5. From (52), it follows that the vector
zzz(t) = (z1(t),z2(t),z3(t)) and the parameter estimation error (ea(t),eb(t)) are globally
bounded, i.e. [

z1(t) z2(t) z3(t) ea(t) eb(t)
]
∈ L∞. (53)

Also, it follows from (52) that

V̇ ¬−z2
1 − z2

2 − z2
3 =−∥z∥2. (54)

That is,
∥z∥2 ¬−V̇ . (55)

Integrating the inequality (55) from 0 to t, we get

t∫
0

|zzz(τ)|2 dτ¬V (0)−V (t). (56)

From (56), it follows that zzz(t) ∈ L2. From Eq. (30), it can be deduced that żzz(t) ∈ L∞.
Thus, using Barbalat’s lemma, we conclude that zzz(t) → 000 exponentially as t → ∞ for
all initial conditions zzz(0) ∈ ℜ3. Hence, it is immediate that xxx(t) → 000 exponentially as
t → ∞ for all initial conditions xxx(0) ∈ ℜ3. This completes the proof.

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential equations (30) and (35),
when the adaptive control law (33) is applied.

The parameter values of the novel jerk chaotic system (30) are taken as a = 0.4
and b = 0.8, and the positive gain constant as k = 8. Furthermore, as initial condi-
tions of the novel jerk chaotic system (30), we take x1(0) = 6.2, x2(0) = −12.5 and
x3(0) = 4.1. Also, as initial conditions of the parameter estimates â(t) and b̂(t), we take
â(0) = 18.7 and b̂(0) = 11.5. In Fig. 6, the exponential convergence of the controlled
states x1(t),x2(t),x3(t) is depicted, when the adaptive control law (33) and (35) are im-
plemented.
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Figure 6. Time-history of the controlled states x1(t),x2(t),x3(t)

5. Adaptive synchronization of the identical 3-D novel jerk chaotic systems with
unknown parameters

In this section, we use backstepping control method to derive an adaptive control
law for globally and exponentially synchronizing the identical 3-D novel jerk chaotic
systems with unknown parameters. As the master system, we consider the 3-D novel
jerk chaotic system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = x1 −a [sinh(x1)+ sinh(x2)]−bx3

(57)

where x1,x2,x3 are the states of the system, and a and b are unknown constant parame-
ters. As the slave system, we consider the 3-D novel jerk chaotic system given by

ẏ1 = y2

ẏ2 = y3

ẏ3 = y1 −a [sinh(y1)+ sinh(y2)]−by3 +u

(58)

where y1,y2,y3 are the states of the system, and u is a backstepping control to be deter-
mined using estimates â(t) and b̂(t) for a and b, respectively. We define the synchroni-
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zation errors between the states of the master system (57) and the slave system (58) as
e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3.

(59)

Then the error dynamics is easily obtained as
ė1 = e2

ė2 = e3

ė3 = e1 −be3 −a [sinh(y1)+ sinh(y2)]

+ a [sinh(x1)+ sinh(x2)]+u.

(60)

The parameter estimation errors are defined as:{
ea(t) = a− â(t)
eb(t) = b− b̂(t).

(61)

Differentiating (61) with respect to t, we obtain the following equations:{
ėa(t) = − ˙̂a(t)

ėb(t) = − ˙̂b(t).
(62)

Next, we shall state and prove the main result of this section.

Theorem 11 The identical 3-D novel jerk chaotic systems (57) and (58) with unknown
parameters a and b are globally and exponentially synchronized by the adaptive control
law {

u(t) = −4e1 −5e2 − (3− b̂(t))e3 − â(t)[sinh(x1)+ sinh(x2)]

+â(t)[sinh(y1)+ sinh(y2)]− kz3
(63)

where k > 0 is a gain constant,

z3 = 2e1 +2e2 + e3, (64)

and the update law for the parameter estimates â(t), b̂(t) is given by{
˙̂a(t) = [sinh(x1)+ sinh(x2)− sinh(y1)− sinh(y2)]z3
˙̂b(t) = −e3z3.

(65)
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Proof We prove this result via backstepping control method and Lyapunov stability
theory. First, we define a quadratic Lyapunov function

V1(z1) =
1
2

z2
1 (66)

where
z1 = e1. (67)

Differentiating V1 along the error dynamics (60), we get

V̇1 = z1ż1 = e1e2 =−z2
1 + z1(e1 + e2). (68)

Now, we define
z2 = e1 + e2. (69)

Using (69), we can simplify the equation (68) as

V̇1 =−z2
1 + z1z2. (70)

Secondly, we define a quadratic Lyapunov function

V2(z1,z2) =V1(z1)+
1
2

z2
2 =

1
2
(
z2

1 + z2
2
)
. (71)

Differentiating V2 along the error dynamics (60), we get

V̇2 =−z2
1 − z2

2 + z2(2e1 +2e2 + e3). (72)

Now, we define
z3 = 2e1 +2e2 + e3. (73)

Using (73), we can simplify the equation (72) as

V̇2 =−z2
1 − z2

2 + z2z3. (74)

Finally, we define a quadratic Lyapunov function

V (z1,z2,z3,ea,eb) =V2(z1,z2)+
1
2

z2
3 +

1
2

e2
a +

1
2

e2
b (75)

which is a positive definite function on ℜ5. Differentiating V along the error dynamics
(60), we get

V̇ =−z2
1 − z2

2 − z2
3 + z3(z3 + z2 + ż3)− ea ˙̂a− eb

˙̂b. (76)

Eq. (76) can be written compactly as

V̇ =−z2
1 − z2

2 − z2
3 + z3S− ea ˙̂a− eb

˙̂b (77)
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where
S = z3 + z2 + ż3 = z3 + z2 +2ė1 +2ė2 + ė3. (78)

A simple calculation gives{
S = 4e1 +5e2 +(3−b)e3 −a[sinh(y1)+ sinh(y2)]

+a[sinh(x1)+ sinh(x2)]+u.
(79)

Substituting the adaptive control law (63) into (48), we obtain

S = (a− â)[sinh(x1)+ sinh(x2)− sinh(y1)− sinh(y2)]− (b− b̂)e3 − kz3. (80)

Using the definitions (62), we can simplify (80) as

S = ea[sinh(x1)+ sinh(x2)− sinh(y1)− sinh(y2)]− ebe3 − kz3. (81)

Substituting the value of S from (81) into (77), we obtain{
V̇ = −z1 − z2 − (1+ k)z2

3 + eb

[
−e3z3 − ˙̂b

]
+ea

[
[sinh(x1)+ sinh(x2)− sinh(y1)− sinh(y2)]z3 − ˙̂a

]
.

(82)

Substituting the update law (65) into (82), we get

V̇ =−z2
1 − z2

2 − (1+ k)z2
3, (83)

which is a negative semi-definite function on ℜ5. From (83), it follows that the vector
zzz(t) = (z1(t),z2(t),z3(t)) and the parameter estimation error (ea(t),eb(t)) are globally
bounded, i.e. [

z1(t) z2(t) z3(t) ea(t) eb(t)
]
∈ L∞. (84)

Also, it follows from (83) that

V̇ ¬−z2
1 − z2

2 − z2
3 =−∥z∥2. (85)

That is,
∥z∥2 ¬−V̇ . (86)

Integrating the inequality (86) from 0 to t, we get

t∫
0

|zzz(τ)|2 dτ¬V (0)−V (t). (87)

From (87), it follows that zzz(t) ∈ L2. From Eq. (60), it can be deduced that żzz(t) ∈ L∞.
Thus, using Barbalat’s lemma, we conclude that zzz(t) → 000 exponentially as t → ∞ for
all initial conditions zzz(0) ∈ ℜ3. Hence, it is immediate that eee(t) → 000 exponentially as
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t → ∞ for all initial conditions eee(0) ∈ ℜ3. This completes the proof.

For the numerical simulations, the classical fourth-order Runge-Kutta method with
step size h = 10−8 is used to solve the system of differential equations (57) and (58).

The parameter values of the novel jerk chaotic systems are taken as a = 0.4 and
b = 0.8, and the positive gain constant as k = 8. Furthermore, as initial conditions of
the master chaotic system (57), we take x1(0) = 2.3 x2(0) = 3.5 and x3(0) = −0.7. As
initial conditions of the slave chaotic system (58), we take y1(0) = 3.5, y2(0) = −4.2
and y3(0) = 1.5. Also, as initial conditions of the parameter estimates â(t) and b̂(t), we
take â(0) = 8.2 and b̂(0) = 12.5.

In Figs. 7-10, the complete synchronization of the identical 3-D jerk chaotic systems
(57) and (58) is shown, when the adaptive control law and the parameter update law are
impelemented.

Also, in Fig. 10, the time-history of the synchronization errors e1(t),e2(t),e3(t), is
shown.
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Figure 7. Synchronization of the states x1(t) and y1(t)
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Figure 10. Time-history of the synchronization errors e1(t),e2(t),e3(t)

6. Circuit realization of the novel jerk system

In this section, we design an electronic circuit modeling new jerk system (8). The
circuit in Fig. 11 has been designed following an approach based on operational ampli-
fiers [59, 60, 70] where the state variables x1, x2, and x3 of the system (8) are associated
with the voltages across the capacitors C1, C2, and C3, respectively. In Fig. 11, there are
three operational amplifiers, which are connected as integrators (U1, U2, and U3). The
nonlinear equations for the electronic circuit are derived as follows:

ẋ1 =
1

R1C1
x2

ẋ2 =
1

R2C2
x3

ẋ3 =
1

R3C3
x1 − 1

R4C3
sinh(x1)− 1

R5C3
sinh(x2)− 1

R6C3
x3.

(88)

where the values of components are chosen as: R1 = R2 = R3 = R7 = R8 = R9 = R10 =
R11 = R12 = 10kΩ, R4 = R5 = 0.25kΩ, R6 = 12.5kΩ, and C1 = C2 = C3 = 10nF . The
power supplies of all active devices are ±15VDC. As shown in Fig. 11, nonlinearities
of the circuit are two inverting hyperbolic sinusoidal blocks, each block can be realized
approximately by common electronic components as presented in Fig. 12.
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Figure 11. Circuit diagram for realizing the novel jerk system

Figure 12. Designed electronic circuit modeling of the inverting hyperbolic sinusoidal block. Here the
values of components are selected as: Rn1 = 10kΩ, Rn2 = 1MΩ, Rn3 = 60kΩ, and Rn4 = 120kΩ

It is well know that it is possible to express the hyperbolic sinusoidal function as
Taylor series [71]:

sinh(x) = x+
x3

3!
+

x5

5!
+ · · ·=

∞

∑
n=0

x2n+1

(2n+1)!
. (89)

Hence, the corresponding circuital equation of each block is given as

F (xi) =−Rn1

Rn2
xi −

Rn1

Rn3
x3

i −
Rn1

Rn4
x5

i ≈ δsinh(xi) (90)

where δ =− 1
102 is the scaling factor.

The designed circuit is implemented by using the electronic simulation package NI
Multisim. The obtained results are presented in Figs. 13-15. Here Figs. 13, 14 and 15
display the (x1,x2), (x2,x3) and (x3,x1) phase portraits respectively. Good qualitative
agreement between the numerical results and the electronic simulation results shows the
correction and feasibility of novel chaotic jerk system (8).
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Figure 13. 2-D projection of the designed electronic circuit on (x1,x2)-plane obtained from NI Multisim.

Figure 14. 2-D projection of the designed electronic circuit on (x2,x3)-plane obtained from NI Multisim.
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Figure 15. 2-D projection of the designed electronic circuit on (x3,x1)-plane obtained from NI Multisim.

7. Conclusion

In this paper, we proposed a novel six-term jerk chaotic system with two hyperbolic
sinusoidal nonlinearities. Dynamic characteristics of new system has been discovered.
It is worth noting that the possibilities of control and synchronization of such system
with unknown parameters are verified by constructing an adaptive backstepping con-
troller. The main results were established using adaptive control theory and Lyapunov
stability theory. Moreover, the correction and feasibility of novel theoretical system are
confirmed through Spice results which are obtained from the designed electronic circuit.
It is possible to use the new jerk system in potential chaos-based applications such as
secure communications, random generation, or path planning for autonomous mobile
robots. It is believed that the unknown dynamical behaviors of such strange chaotic jerk
systems should be further investigated in the future researches.
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