PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research work, a six-term 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities has been proposed, and its qualitative properties have been detailed. The Lyapunov exponents of the novel jerk system are obtained as L1 = 0.07765,L2 = 0, and L3 = −0.87912. The Kaplan-Yorke dimension of the novel jerk system is obtained as DKY = 2.08833. Next, an adaptive backstepping controller is designed to stabilize the novel jerk chaotic system with two unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve complete chaos synchronization of the identical novel jerk chaotic systems with two unknown parameters. Finally, an electronic circuit realization of the novel jerk chaotic system using Spice is presented in detail to confirm the feasibility of the theoretical model.
Rocznik
Strony
375--403
Opis fizyczny
Bibliogr. 71 poz., rys., wzory
Twórcy
  • Research and Development Centre, Vel Tech University, Avadi, Chennai- 600062, Tamilnadu, India
autor
  • Physics Department, Aristotle University of Thessaloniki, GR-54124, Greece
autor
  • School of Electronics and Telecommunications, Hanoi University of Science and Technology 01 Dai Co Viet, Hanoi, Vietnam
autor
  • Department of Mathematics, Vel Tech University, Avadi, Chennai- 600062, Tamilnadu, India
autor
  • Department of Physics, Lagos State University, Ojo, Lagos, Nigeria
Bibliografia
  • [1] G. L. Baker and J. P. Gollub: Chaotic Dynamics: An Introduction. New York, USA, Cambridge University Press, 1990.
  • [2] T. Kapitaniak: Controlling Chaos: Theoretical and Practical Methods in Nonlinear Dynamics. New York, USA, Academic Press, 1996.
  • [3] A. S. Pikovsky, M. G. Rosenblum and J. Kurths: Synchronization: A Unified Concept in Nonlinear Sciences. Cambridge, UK, Cambridge University Press, 2001.
  • [4] M. Lakshmanan and K. Murali: Chaos in Nonlinear Oscillators: Controlling and Synchronization. Singapore, World Scientific, 1996.
  • [5] D. Ruelle and F. Takens: On the nature of turbulence. Communications in Mathematical Physics, 20 (1971), 167-192.
  • [6] R. M. May: Limit cycles in predator-prey communities. Science, 177 (1972), 900-908.
  • [7] M. J. Feigenbaum: Universal behaviour in nonlinear systems. Physica D: Nonlinear Phenomena, 7 (1983), 16-39.
  • [8] K. T. Alligood, T. D. Sauer and J. A. Yorke: Chaos: An introduction to Dynamical Systems. New York, Springer-Verlag, 2000.
  • [9] H. Fujisaka and T. Yamada: Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics, 69 (1983), 32-47.
  • [10] L. M. Pecora and T. L. Caroll: Synchronization in chaotic systems. Physical Review Letters, 64 (1990), 821-825.
  • [11] V. Sundarapandian and R. Karthikeyan: Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. Int. J. of Signal System Control and Engineering Application, 4 (2011), 18-25.
  • [12] S. Vaidyanathan: Anti-synchronization of Sprott-I and Sprott-M chaotic systems via adaptive control. Int. J. of Control Theory and Applications, 5 (2012), 41-59.
  • [13] V. Sundarapandian and R. Karthikeyan: Anti-synchronization of Lu and Pan chaotic systems by adaptive nonlinear control. Int. J. of Soft Computing, 6 (2011), 111-118.
  • [14] V. Sundarapandian and R. Karthikeyan: Hybrid synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems via active control. J. of Engineering and Applied Sciences, 7 (2012), 254-264.
  • [15] R. Karthikeyan and V. Sundarapandian: Hybrid chaos synchronization of four-scroll systems via active control. J. of Electrical Engineering, 65 (2014), 97-103.
  • [16] M. G. Rosenblum, A. S. Pikovsky and J. Kurths: From phase to lag synchronization in coupled chaotic oscillators. Physical Review Letters, 78 (1997), 4193-4196.
  • [17] M. G. Rosenblum, A. S. Pikovsky and J. Kurths: Phase synchronization of chaotic oscillators. Physical Review Letters, 76 (1996), 1804-1807.
  • [18] V. Astakhov, A. Shabunin and V. Anishchenko: Antiphase synchronization in symmetrically coupled self-oscillators. Int. J. of Bifurcation and Chaos, 10 (2000), 849-857.
  • [19] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring and H. D. I. Ababarnel: Generalized synchronization of chaos in directionally coupled chaotic systems. Physical Review E, 51 (1995), 980-994.
  • [20] R. Mainieri and J. Rehacek: Projective synchronization in three-dimensional chaotic system. Physical Review Letters, 82 (1999), 3042-3045.
  • [21] P. Sarasu and V. Sundarapandian: The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. Int. J. of Soft Computing, 6 (2011), 216-223.
  • [22] P. Sarasu and V. Sundarapandian: Adaptive controller design for the generalized projective synchronization of 4-scroll systems. Int. J. of Signal System Control and Engineering Application, 5 (2012), 21-30.
  • [23] S. Vaidyanathan and S. Pakiriswamy: Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. Int. J. of Control Theory and Applications, 6 (2013), 153-163.
  • [24] H. N. Agiza and M. T. Yassen: Synchronization of Rossler and Chen chaotic dynamical systems using active control. Physics Letters A, 278 (2001), 191-197.
  • [25] U. E. Vincent: Synchronization of identical and non-identical 4-D chaotic systems using active control. Chaos, Solitons and Fractals, 37 (2008), 1065-1075.
  • [26] B. A. Idowu, U. E. Vincent and A. N. Njah: Synchronization of chaos in non-identical parametrically excited systems. Chaos, Solitons and Fractals, 39 (2009), 2322-2331.
  • [27] S. Vaidyanathan and K. Rajagopal: Hybrid synchronization of hyperchaotic Wang-Chen and hyperchaotic lorenz systems by active non-linear control. Int. J.ournal of Signal System Control and Engineering Application, 4 (2011), 55-61.
  • [28] V. Sundarapandian and R. Karthikeyan: Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. European J. of Scientific Research, 64 (2011), 94-106.
  • [29] V. Sundarapandian and R. Karthikeyan: Adaptive antisynchronization of Uncertain Tigan and Li Systems. J. of Engineering and Applied Sciences, 7 (2012), 45-52.
  • [30] P. Sarasu and V. Sundarapandian: Generalized projective synchronization of three-scroll chaotic systems via adaptive control. European J. of Scientific Research, 72 2012, 504-522.
  • [31] S. Vaidyanathan and K. Rajagopal: Global chaos synchronization of hyperchaotic Pang and hyperchaotic Wang systems via adaptive control. International J. of Soft Computing, 7 (2012), 28-37.
  • [32] X. Tan, J. Zhang and Y. Yang: Synchronizing chaotic systems using backstepping design. Chaos, Solitons and Fractals, 16 (2003), 37-45.
  • [33] S. Rasappan and S. Vaidyanathan: Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control. Far East J. of Mathematical Sciences, 67 (2012), 265-287.
  • [34] S. Rasappan and S. Vaidyanathan: Hybrid synchronization of n-scroll Chua circuits using adaptive backstepping control design with recursive feedback. Malaysian J. of Mathematical Sciences, 7, (2013), 219-226.
  • [35] R. Suresh and V. Sundarapandian: Global chaos synchronization of a family of n-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East J. of Mathematical Sciences, 73 (2013) 73-95.
  • [36] S. Rasappan and S. Vaidyanathan: Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Mathematical J., 54 (2014), 293-320.
  • [37] S. Vaidyanathan and S. Rasappan: Global chaos synchronization of nscroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arabian J. for Science and Engineering, 39 (2014), 3351-3364.
  • [38] D. Zhang and J. Xu: Projective synchronization of different chaotic timedelayed neural networks based on integral sliding mode controller. Applied Mathematics and Computation, 217 (2010), 164-174.
  • [39] V. Sundarapandian and S. Sivaperumal: Sliding controller design of hybrid synchronization of four-wing chaotic systems. Int. J. of Soft Computing, 6 (2011), 224-231.
  • [40] S. Vaidyanathan: Global chaos control of hyperchaotic Liu system via sliding control method. Int. J. of Control Theory and Applications, 5 (2012), 117-123.
  • [41] S. Vaidyanathan and S. Sampath: Anti-synchronization of four-wing chaotic systems via sliding mode control. Int. J. of Automatic Computing, 9 (2012), 274-279.
  • [42] M. C. Pai: Global synchronization of uncertain chaotic systems via discrete-time sliding mode control. Applied Mathematics and Computation, 227 (2014), 663-671.
  • [43] E. N . Lorenz: Deterministic nonperiodic flow. J. of the Atmospheric Sciences, 20 (1963), 130-141.
  • [44] O. E. Rössler: An equation for continuous chaos. Physics Letters A, 57 (1976), 397-398.
  • [45] A. Arneodo, P. Coullet and C. Tresser: Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79 (1981), 573-579.
  • [46] J. C. Sprott: Some simple chaotic flows. Physical Review E, 50 (1994), 647-650.
  • [47] G. Chen and T. Ueta: Yet another chaotic attractor. Int. J. of Bifurcation and Chaos, 9 (1999), 1465-1466.
  • [48] J. Lü and G. Chen: A new chaotic attractor coined. Int. J. of Bifurcation and Chaos, 12 (2002), 659-661.
  • [49] C. X. Liu, T. Liu, L. Liu and K. Liu: A new chaotic attractor. Chaos, Solitons and Fractals, 22 (2004), 1031-1038.
  • [50] G. Cai and Z. Tan: Chaos synchronization of a new chaotic system via nonlinear control. J. of Uncertain Systems, 1 (2007), 235-240.
  • [51] G. Tigan and D. Opris: Analysis of a 3D chaotic system. Chaos, Solitons and Fractals, 36 (2008), 1315-1319.
  • [52] D. Li: A three-scroll chaotic attractor. Physics Letters A, 372 (2008), 387-393.
  • [53] V. Sundarapandian: Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. J. of Engineering Science and Technology Review, 6 (2013), 45-52.
  • [54] S. Vaidyanathan: A new six-term 3-D chaotic system with an exponential nonlinearity. Far East J. of Mathematical Sciences, 79 (2013), 135-143.
  • [55] S. Vaidyanathan: Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J. of Engineering Science and Technology Review, 6 (2013), 53-65.
  • [56] S. Vaidyanathan: A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East J. of Mathematical Sciences, 84 (2014), 219-226.
  • [57] S. Vaidyanathan: Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. Int. J. of Modelling, Identification and Control, 22 (2014), 41-53.
  • [58] S. Vaidyanathan and K. Madhavan: Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. Int. J. of Control Theory and Applications, 6 (2013), 121-137.
  • [59] V. Sundarapandian and I. Pehlivan: Analysis, control, synchronization and circuit design of a novel chaotic system. Mathematical and Computer Modelling, 55 (2012), 1904-1915.
  • [60] I. Pehlivan, I. M. Moroz and S. Vaidyanathan: Analysis, synchronization and circuit design of a novel butterfly attractor. J. of Sound and Vibration, 333 (2014) 5077-5096.
  • [61] S. Jafari and J.C. Sprott: Simple chaotic flows with a line equilibrium. Chaos, Solitons and Fractals, 57 (2013), 79-84.
  • [62] V. T. Pham, C. Volos, S. Jafari, Z. Wei and X. Wang: Constructing a novel no-equilibrium chaotic system. Int. J. of Bifurcation and Chaos, 24 (2014), 1450073.
  • [63] H. P. W. Gottlieb: Question # 38. What is the simplest jerk function that gives chaos? American J. of Physics, 64 (1996), 525.
  • [64] J. C. Sprott: Some simple chaotic jerk functions. American J. of Physics, 65 (1997), 537-543.
  • [65] G. Cai and W. Tu: Adaptive backstepping control of the uncertain unified chaotic system. Int. J. of Nonlinear Science, 4 (2007), 17-24.
  • [66] M. T. Yassen: Controlling, synchronization and tracking chaotic Liu system using active backstepping design. Physics Letters A, 360 (2007), 582-587.
  • [67] J. A. Laoye, U. E. Vincent and S. O. Kareem: Chaos control of 4D chaotic systems using recursive backstepping nonlinear controller. Chaos, Solitons and Fractals, 39 (2009), 356-362.
  • [68] S. Vaidyanathan: Adaptive backstepping controller and synchronizer design for Arneodo chaotic system with unknown parameters. Int. J. of Computer Science and Information Technology, 4 (2012), 145-159.
  • [69] J. C. Sprott: A new class of chaotic circuit. Physics Letters A, 266 (2000), 19-23.
  • [70] J. C. Sprott: Advanced Engineering Mathematics. Singapore, World Scientific, 2010.
  • [71] E. Kreyszig: Advanced Engineering Mathematics. USA, Wiley, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afc815b3-5aca-48d5-b575-c408625be249
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.