PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of shot peening on corrosion resistance of additive manufactured 17-4PH steel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Components produced by additive manufacturing (AM) via direct metal laser sintering (DMLS) have typical as-fabricated surface defects. As a result, surface properties of AM products should be modified to increase their strength, anti-wear behavior, and at the same time ensure their high corrosion resistance. Surface modification via shot peening (SP) is considered suitable for AM of engineering devices made of 17-4PH (X5CrNiCuNb16-4) stainless steel. The objective of this study was to determine the effect of three types of peening media (CrNi steel shot, glass, and ceramic beads) on the corrosion resistance of specimens of DMLS 17-4PH stainless steel. Results demonstrated that SP caused steel microstructure refinement and induced both martensite (α) formation and retained austenite (γ) reduction. 17-4PH specimens peened showed the increase in surface hardness of 255, 281, and 260 HV0.2 for ceramic, glass, and steel, respectively. DMLS 17-4PH specimens modified by SP exhibited different surface morphology, hardness, and microstructure and thus, these properties affect corrosion performance. The results implied that steel shot peened with steel shot showed the highest resistance to corrosion processes (Icorr= 0.019μA/cm2), slightly worse with glass (Icorr= 0.227μA/cm2) and ceramics (Icorr= 0.660μA/cm2) peened. In the case of ceramic and glass beads, it was possible to confirm the presence of the above-mentioned particles in the surface layer after SP.
Wydawca
Rocznik
Strony
135--151
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka36, 20-618 Lublin, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka36, 20-618 Lublin, Poland
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka36, 20-618 Lublin, Poland
Bibliografia
  • [1] Wang J, Zou H, Li C, Peng Y, Qiu S, Shen B. The microstructure evolution of type 17-4PH stainless steel during long-term aging at 350°C. Nucl Eng Des. 2006;236(24): 2531–6.
  • [2] Sabooni S, Chabok A, Feng SC, Blaauw H, Pijper TC, Yang HJ, et al. Laser powder bed fusion of 17–4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties. Addit Manuf. 2021;46: 102176.
  • [3] Slunder CJ, Hoenie AF, Hall AM. Thermal and mechanical treatment for precipitation-hardening stainless steels. Battelle Memorial Inst Columbus Ohio Columbus labs; 1968 Jan.
  • [4] Hsiao CN, Chiou CS, Yang JR. Aging reactions in a 17-4 PH stainless steel. Mater Chem Phys. 2002;74(2): 134–42.
  • [5] Sowa R, Kowal A, Roga E, Arabasz S, Dziedzic A, Dul I, et al. Influence of double solution treatment on hardness in 17-4 pH steel. Zas Mat. 2015;56(3): 261–8.
  • [6] Sealy MP, Karunakaran R, Ortgies S, Madireddy G, Malshe AP, Rajurkar KP. Reducing corrosion of additive manufactured magnesium alloys by interlayer ultrasonic peening. CIRP Ann. 2021;70(1): 179–82.
  • [7] Wang C, Wang C, Wang L, Lai Y, Li K, Zhou Y. A dislocation density–based comparative study of grain refinement, residual stresses, and surface roughness induced by shot peening and surface mechanical attrition treatment. Int J Adv Manuf Technol. 2020;108(1–2): 505–25.
  • [8] Świetlicki A, Szala M, Walczak M. Effects of shot peening and cavitation peening on properties of surface layer of metallic materials—A short review. Materials. 2022;15(7): 2476.
  • [9] Qin E, Chen G, Tan Z, Wu S. Shot peening and thermal stress relaxation in 17-4 PH stainless steel. J Mater Eng Perform. 2015;24(11): 4578–83.
  • [10] Nino-Barrera J, Sanchez-Aleman J, Acosta-Humanez M, Gamboa-Martinez L, Cortes-Rodriguez C. Shot peening increases resistance to cyclic fatigue fracture of endodontic files. Sci Rep. 2021;11(1): 12961.
  • [11] Żebrowski R, Walczak M, Korga A, Iwan M, Szala M. Effect of shot peening on the mechanical properties and cytotoxicity behaviour of titanium implants produced by 3D printing technology. J Healthcare Eng. 2019;2019: 1–11.
  • [12] John M, Kalvala PR, Misra M, Menezes PL. Peening techniques for surface modification: processes, properties, and applications. Materials. 2021;14(14): 3841.
  • [13] Sadeghi E, Pant P, Jafari R, Peng RL, Karimi P. Sub-surface grain refinement in electron beam-powder bed fusion of Alloy 718: surface texture and oxidation performance. Mater Charact. 2020;168: 110567.
  • [14] Leon A, Katarivas Levy G, Ron T, Shirizly A, Aghion E. The effect of strain rate on stress corrosion performance of Ti6Al4V alloy produced by additive manufacturing process. J Mater Res Technol. 2020;9(3): 4097–105.
  • [15] Wen D, Long P, Li J, Huang L, Zheng Z. Effects of linear heat input on microstructure and corrosion behavior of an austenitic stainless steel processed by wire arc additive manufacturing. Vacuum. 2020;173: 109131.
  • [16] Hung W. Postprocessing of additively manufactured metal parts. J Mater Eng Perform. 2021;30(9): 6439–60.
  • [17] Maleki E, Bagherifard S, Bandini M, Guagliano M. Surface post-treatments for metal additive manufacturing: progress, challenges, and opportunities. Addit Manuf. 2021;37: 101619.
  • [18] AlMangour B, Yang JM. Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des. 2016;110: 914–24.
  • [19] Tavares SSM, Pardal JM, Martins TRB, da Silva MR. Influence of sulfur content on the corrosion resistance of 17-4PH stainless steel. J Mater Eng Perform. 2017;26(6): 2512–9.
  • [20] Fargas G, Roa JJ, Mateo A. Effect of shot peening on metastable austenitic stainless steels. Mater Sci Eng A. 2015;641: 290–6.
  • [21] Kirk D, Payne NJ. Transformations induced in austenitic stainless steels by shot peening. In: ICSP7: 7th International Conference on Shot Peening, Warsaw, Poland; 1999.
  • [22] Murr LE, Martinez E, Hernandez J, Collins S, Amato KN, Gaytan SM, et al. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting. J Mater Res Technol. 2012;1(3): 167–77.
  • [23] Starr TL, Rafi K, Stucker B, Scherzer CM. Controlling phase composition in selective laser melted stainless steels. 2012 Aug 22 [cited 2022 Nov 29] Available from: https://repositories.lib.utexas.edu/handle/2152/88426
  • [24] Rafi HK, Pal D, Patil N, Starr TL, Stucker BE. Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting. J Mater Eng Perform. 2014;23(12): 4421–8.
  • [25] Guo D, Chen J, Chen X, Shi Q, Cristino VAM, Kwok CT, et al. Pitting corrosion behavior of friction-surfaced 17-4PH stainless steel coatings with and without subsequent heat treatment. Corros Sci. 2021;193: 109887.
  • [26] Stoudt MR, Campbell CE, Ricker RE. Examining the relationship between post-build microstructure and the corrosion resistance of additively manufactured 17-4PH stainless steel. Materialia. 2022;22: 101435.
  • [27] Campbell CE, Stoudt MR, Zhang F. Additive manufacturing of steels and stainless steels. In: Bourell DL, Frazier W, Kuhn H, Seifi M. (eds.) Additive manufacturing processes: ASM International; 2020. p. 346–65 [cited 2022 Aug 31]. Available from: http://dl.asminternational.org/handbooks/book/119/chapter/2349634/Additive-Manufacturing-of-Steels-and-Stainless
  • [28] Lara Banda M del R, Pérez Ortíz DY, Gaona Tiburcio C, Zambrano-Robledo P, Cabral Miramontes JA, Almeraya Calderon F. Citric acid passivation of 15-5PH and 17-4PH stainless steel used in the aeronautical industry. In: Zambrano-Robledo P, Salinas-Rodriguez A, Almeraya Calderon F. (eds). Proceedings of the Symposium of Aeronautical and Aerospace Processes, Materials and Industrial Applications. Cham: Springer International Publishing; 2018. p. 95–104 [cited 2022 Jun 8]. Available from: http://link.springer.com/10.1007/978-3-319-65611-3_9
  • [29] Karaminezhaad M, Sharafi S, Dalili K. Effect of molybdenum on SCC of 17-4PH stainless steel under different aging conditions in chloride solutions. J Mater Sci. 2006;41(11): 3329–33.
  • [30] Coseglio MSDR. Sulphide stress cracking of 17-4 PH for applications in oilfield components. Mater Sci Technol. 2017;33(16): 1863–78.
  • [31] Nakhaie D, Moayed MH. Pitting corrosion of cold rolled solution treated 17-4 PH stainless steel. Corros Sci. 2014;80: 290–8.
  • [32] Raja KS, Rao KP. Pitting behavior of type 17-4 PH stainless steel weldments. Corrosion. 1995;51(8): 586–92.
  • [33] Kosasang O, Wongkaewmoon M, Chumphongphan S. Effect of aging heat treatment on corrosion behavior and corrosion kinetics of 17-4PH stainless steel in artificial saliva. J Sains Malays. 2021;50(3): 849–58.
  • [34] Barroux A, Ducommun N, Nivet E, Laffont L, Blanc C. Pitting corrosion of 17-4PH stainless steel manufactured by laser beam melting. Corro Sci. 2020;169: 108594.
  • [35] Lashgari HR, Xue Y, Onggowarsito C, Kong C, Li S. Microstructure, tribological properties and corrosion behaviour of additively manufactured 17-4PH stainless steel: effects of scanning pattern, build orientation, and single vs. double scan. Mater Today Commun. 2020;25: 101535.
  • [36] Jacob G. Prediction of solidification phases in Cr-Ni stainless steel alloys manufactured by laser based powder bed fusion process. Gaithersburg, MD: National Institute of Standards and Technology; 2018 Mar p. NIST AMS 100-14. Report Number: NIST AMS 100-14.
  • [37] Eskandari H, Lashgari HR, Ye L, Eizadjou M, Wang H. Microstructural characterization and mechanical properties of additively manufactured 17–4PH stainless steel. Mater Today Commun. 2022;30: 103075.
  • [38] Wang Z, Luan W, Huang J, Jiang C. XRD investigation of microstructure strengthening mechanism of shot peening on laser hardened 17-4PH. Mater Sci Eng A. 2011;528(21): 6417–25.
  • [39] Mathoho I, Akinlabi ET, Arthur N, Tlotleng M, Masina B. Metallurgical characteristics of laser peened 17-4 PH SS processed by LENS technique. In: The Minerals, Metals & Materials Series (eds) TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. Cham: Springer International Publishing; 2019. p. 279–85. (The Minerals, Metals & Materials Series).
  • [40] Bagherifard S, Ghelichi R, Guagliano M. Numerical and experimental analysis of surface roughness generated by shot peening. Appl Surf Sci. 2012;258(18): 6831–40.
  • [41] Higounenc O. Correlation of shot peening parameters to surface characteristic. 2005. In: ICSP9: 9th International Conference on Shot Peening, Marne la Vallée, France, 6-9.09.2005.
  • [42] Walczak M, Szala M. Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing. Archiv Civ Mech Eng. 2021;21(4): 157.
  • [43] Sanaei N, Fatemi A. Analysis of the effect of surface roughness on fatigue performance of powder bed fusion additive manufactured metals. Theor Appl Fract Mech. 2020;108: 102638.
  • [44] Cheruvathur S, Lass EA, Campbell CE. Additive manufacturing of 17-4 PH stainless steel: post-processing heat treatment to achieve uniform reproducible microstructure. JOM. 2016;68(3): 930–42.
  • [45] Maleki E, Unal O, Reza Kashyzadeh K, Bagherifard S, Guagliano M. A systematic study on the effects of shot peening on a mild carbon steel: microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens. Appl Surf Sci Adv. 2021;4: 100071.
  • [46] Guennouni N, Barroux A, Grosjean C, Maisonnette D, Nivet E, Andrieu E, et al. Comparative study of the microstructure between a laser beam melted 17-4PH stainless steel and its conventional counterpart. Mater Sci Eng A. 2021;823: 141718.
  • [47] Efe Y, Karademir I, Husem F, Maleki E, Karimbaev R, Amanov A, et al. Enhancement in microstructural and mechanical performance of AA7075 aluminum alloy via severe shot peening and ultrasonic nanocrystal surface modification. Appl Surf Sci. 2020;528: 146922.
  • [48] Kameyama Y, Komotori J. Effect of micro ploughing during fine particle peening process on the microstructure of metallic materials. J Mater Process Technol. 2009;209(20): 6146–55.
  • [49] Soleimani M, Mirzadeh H, Dehghanian C. Effect of grain size on the corrosion resistance of low carbon steel. Mater Res Express. 2020;7(1): 016522.
  • [50] Qiao M, Hu J, Guo K, Wang Q. Influence of shot peening on corrosion behavior of low alloy steel. Mater Res Express. 2020;7(1): 016574.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afc5611f-b082-4da0-bfad-b2ab0ab85b74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.