PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-modal framework for automatic detection of diagnostically important regions in nonalcoholic fatty liver ultrasonic images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The severity of fat in ultrasonic liver images is quantified based on characteristics of three regions in the image namely diaphragm, periportal veins and texture of liver parenchyma. The characteristics of these regions vary with the severity of fat in the liver, and is subjected to low signal to noise ratio, low contrast, poorly defined organ boundaries, etc., hence locating these regions in ultrasound images is challenging task for the sonographers. Automated detection of these regions will help the sonographers to do accurate diagnosis in shorter time, and also acts as a fundamental step to develop automated diagnostic algorithms. In this paper, we propose a novel multi-modal framework for detecting diaphragm, periportal veins and texture of liver parenchyma in ultrasonic liver ultrasound images. Since the characteristics of these regions differ from each other, we propose a specific algorithm for detecting each region. Diaphragm and periportal veins are detected with the combination of Viola Jones and GIST descriptor based classifier, while homogeneous texture regions are detected with the combination of histogram features based classifier and connected components algorithm. The proposed algorithm when tested on 180 ultrasound liver images, detected the diaphragm, periportal veins and texture regions with an accuracy of 97%, 91% and 100% respectively.
Twórcy
autor
  • WiNet Research Lab, Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
  • WiNet Research Lab, Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
autor
  • Asian Institute of Gastroenterology, Hyderabad, Telangana, India
Bibliografia
  • [1] Takahashi Y, Fukusato T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2014;20(42):15539.
  • [2] Bellentani S, Scaglioni F, Marino M, Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig Dis 2010;28(1):155–61.
  • [3] Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999;107(5):450–5.
  • [4] Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999;94(9):2467–74.
  • [5] Lee SS, Park SH. Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroenterol 2014;20(23):7392.
  • [6] Goceri E, Shah ZK, Layman R, Jiang X, Gurcan MN. Quantification of liver fat: a comprehensive review. Comput Biol Med 2016;71:174–89.
  • [7] Hernaez R, Lazo M, Bonekamp S, Kamel I, Brancati FL, Guallar E, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a metaanalysis. Hepatology 2011;54(3):1082–90.
  • [8] Allan R, Thoirs K, Phillips M. Accuracy of ultrasound to identify chronic liver disease. World J Gastroenterol 2010;16 (28):3510.
  • [9] Strauss S, Gavish E, Gottlieb P, Katsnelson L. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. Am J Roentgenol 2007; 189(6):320–3.
  • [10] Bharti P, Mittal D, Ananthasivan R. Computer-aided characterization and diagnosis of diffuse liver diseases based on ultrasound imaging: a review. Ultrason Imaging 2017;39(1):33–61.
  • [11] Alivar A, Danyali H, Helfroush MS. Hierarchical classification of normal, fatty and heterogeneous liver diseases from ultrasound images using serial and parallel feature fusion. Biocybern Biomed Eng 2016;36 (4):697–707.
  • [12] Biswas M, Kuppili V, Edla DR, Suri HS, Saba L, Marinhoe RT, et al. Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput Methods Prog Biomed 2018;155:165–77.
  • [13] Badawi AM, Derbala AS, Youssef A-BM. Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images. Int J Med Inform 1999;55(2):135–47.
  • [14] Kyriacou E, Pavlopoulos S, Konnis G, Koutsouris D, Zoumpoulis P, Theotokas LR. Computer assisted characterization of diffused liver disease using image texture analysis techniques on B-scan images. IEEE nuclear science symposium, vol. 2. 1997. pp. 1479–83.
  • [15] Acharya UR, Vinitha Sree S, Ribeiro R, Krishnamurthi G, Marinho RT, Sanches J, et al. Data mining framework for fatty liver disease classification in ultrasound: a hybrid feature extraction paradigm. Med Phys 2012;39(7 Part1): 4255–64.
  • [16] Pavlopoulos S, Kyriacou E, Koutsouris D, Blekas K, Stafylopatis A, Zoumpoulis P. Fuzzy neural network-based texture analysis of ultrasonic images. IEEE Eng Med Biol Mag 2000;19(1):39–47.
  • [17] Acharya UR, Koh JEW, Hagiwara Y, Tan JH, Gertych A, Vijayananthan A, et al. Automated diagnosis of focal liver lesions using bidirectional empirical mode decomposition features. Comput Biol Med 2018.
  • [18] Wu C-C, Lee W-L, Chen Y-C, Hsieh K-S. Evolution-based hierarchical feature fusion for ultrasonic liver tissue characterization. IEEE J Biomed Health Inform 2013;17 (5):967–76.
  • [19] Singh M, Singh S, Gupta S. An information fusion based method for liver classification using texture analysis of ultrasound images. Inf Fusion 2014;19:91–6.
  • [20] Liao Y-Y, Yang K-C, Lee M-J, Huang K-C, Chen J-D, Yeh C-K. Multifeature analysis of an ultrasound quantitative diagnostic index for classifying nonalcoholic fatty liver disease. Sci Rep 2016;6.
  • [21] Laura L, Rachel W, Emmanuel T. Metabolic and cardiovascular complications in the liver transplant recipient. Ann Gastroenterol 2015;28:111.
  • [22] Khullar V, Dolganiuc A, Firpi RJ. Pre-and-post transplant considerations in patients with nonalcoholic fatty liver disease. World J Transpl 2014;4(2):8192.
  • [23] Bharath R, Pradeep Kumar Mishra P, Rajalakshmi. Automated quantification of ultrasonic fatty liver texture based on curvelet transform and SVD. Biocybern Biomed Eng 2017.
  • [24] Bharath R, Rajalakshmi P. Deep scattering convolution network based features for ultrasonic fatty liver tissue characterization. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2017. pp. 1982–5.
  • [25] Lupsor M, Badea R, Vica C, Nedevschi S, Grigorescu M, Radu C, et al. Non-invasive steatosis assessment in NASH through the computerized processing of ultrasound images: attenuation versus textural parameters. IEEE International Conference on Automation Quality and Testing Robotics (AQTR), vol. 2. 2010. pp. 1–6.
  • [26] Ier S, Cokun A, kizceli T. Quantitative grading using grey relational analysis on ultrasonographic images of a fatty liver. J Med Syst 2012;36(4):2521–8.
  • [27] Mihailescu DM, Gui V, Toma CI, Popescu A, Sporea I. Automatic evaluation of steatosis by ultrasound image analysis. 10th international symposium on electronics and telecommunications (ISETC). IEEE; 2012. p. 311–4.
  • [28] Vicas C, Nedevschi S, Lupsor M, Badea R. Automatic detection of liver capsule using Gabor filters. Applications in steatosis quantification. IEEE 5th International Conference on Intelligent Computer Communication and Processing. IEEE; 2009. p. 133–40.
  • [29] Acharya UR, Fujita H, Bhat S, Raghavendra U, Gudigar A, Molinari F, et al. Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images. Inf Fusion 2016;29:32–9.
  • [30] Acharya UR, Raghavendra U, Fujita H, Hagiwara Y, Koh JEW, Hong TJ, et al. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med 2016;79:250–8.
  • [31] Acharya UR, Faust O, Filippo Molinari S, Sree V, Junnarkar SP, Sudarshan V. Ultrasound-based tissue characterization and classification of fatty liver disease: a screening and diagnostic paradigm. Knowl Based Syst 2015;75:66–77.
  • [32] Acharya UR, Fujita H, Sudarshan VK, Mookiah MRK, Koh JE, Tan JH, et al. An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images. Inf Fusion 2016;31:43–53.
  • [33] Singh D, Das CJ, Baruah MP. Imaging of non alcoholic fatty liver disease: a road less travelled. Indian J Endocrinol Metab 2013;17(6):990.
  • [34] Viola P, Jones MJ. Robust real-time face detection. Int J Comput Vis 2004;57(2):137–54.
  • [35] Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 2001;42(3):145–75.
  • [36] Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001;10(2):266–77.
  • [37] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis 1988;1(4):321–31.
  • [38] Haralock RM, Shapiro LG. Computer and robot vision. Addison-Wesley Longman Publishing Co., Inc; 1991.
  • [39] Sarwal A, Walker FO, Cartwright MS. Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve 2013;47(3):319–29.
  • [40] Chu C, Bai J, Liu L, Wu X, Zheng G. Fully automatic segmentation of hip CT images via random forest regression-based Atlas selection and optimal graph search-based surface detection.Asian Conference on Computer Vision. 1. Cham: Springer; 2014. p. 640–54.
  • [41] Bharath R, Kumar P, Dusa C, Akkala V, Puli S, Harsha Ponduri K, et al. FPGA-based portable ultrasound scanning system with automatic kidney detection. J Imaging 2015;1(1):193–219.
  • [42] Bharath R, Vaish P, Rajalakshmi P. Implementation of diagnostically driven compression algorithms via WebRTC for IoT enabled tele-sonography. IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE; 2016. p. 204–9.
  • [43] ha K, Maek J, Burget R, Bene R, Zvodn E. Novel method for localization of common carotid artery transverse section in ultrasound images using modified Viola-Jones detector. Ultrasound Med Biol 2013;39(10):1887–902.
  • [44] Wang Y-Q. An analysis of the Viola-Jones face detection algorithm. Image Process On Line 2014;4:128–48.
  • [45] Simard P, Bottou L, Haffner P, LeCun Y. Boxlets: a fast convolution algorithm for signal processing and neural networks. Adv Neural Inf Process Syst 1999;571–7.
  • [46] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. European Conference on Computational Learning Theory. Berlin, Heidelberg: Springer; 1995. p. 23–37.
  • [47] Dalal N, Triggs B. Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005. 2005. pp. 886–93.
  • [48] Douze M, Jgou H, Sandhawalia H, Amsaleg L, Schmid C. Evaluation of gist descriptors for web-scale image search. Proceedings of the ACM International Conference on Image and Video Retrieval; 2009. p. 19.
  • [49] Oliva A. Gist of the scene. Neurobiol Atten 2005;696(64): 251–8.
  • [50] Cootes TF, Hill A, Taylor CJ, Haslam J. Use of active shape models for locating structures in medical images. Image Vis Comput 1994;12(6):355–65.
  • [51] Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 1998;7(3):359–69.
  • [52] Cohen LD. On active contour models and balloons. CVGIP Image Underst 1991;53(2):211–8.
  • [53] Cremers D, Schnorr C, Weickert J. Diffusion snakes: combining statistical shape knowledge and image information in a variational framework. IEEE workshop on variational and level set methods in computer vision, proceedings. 2001. pp. 137–44.
  • [54] Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Comput Vis 1997;22(1):61–79.
  • [55] Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011;2 (3):27.
  • [56] Schlkopf B, Smola AJ. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press; 2002.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afc25b31-f89e-41e7-b924-d91b914da638
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.