Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a time-inhomogeneous Markov family (X, P3,x) corresponding to a symmetric uniformly elliptic divergence form operator. We show that for any φ in the Sobolev space W1p∩W12 with p = 2 if d = 1 and p > d > if d > 1 the additive functional Xφ = (φ (X1)- φ (Xx); 0 ≤ s < t} admits a unique strict decomposition into a martingale additive functional of finite energy and a continuous additive functional of zero energy. Moreover, we give a stochastic representation of the zero energy part and show that in case the diffusion coefficient is regular in time the functional Xφ is a Dirichlet process for each starting point (s, x). The paper contains also rectifications of incorrectly presented or incorrectly proved statements of our earlier paper [14].
Czasopismo
Rocznik
Tom
Strony
231--252
Opis fizyczny
Biblogr. 20 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
- [1] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa 22 (1968), pp. 607-693.
- [2] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
- [3] H. Föllmer, Dirichlet processes, in: Stochastic Integrals, D. Williams (Ed.), Lecture Notes in Math. 851, Springer, Berlin 1981, pp. 476-478.
- [4] M. Fukushima, On a strict decomposition of additive functionals for symmetric diffusion processes, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), pp. 277-281.
- [5] M. Fukushima, On a decomposition of additive functionals in the strict sense for a symmetric Markov process, in: Dirichlet Forms and Stochastic Processes, Z. Ma, M. Röckner and J. Yan (Eds.), Walter de Gruyter, Berlin-New York 1995, pp. 155-169.
- [6] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin-New York 1994.
- [7] I. I. Gihman and A. V. Skorokhod, The Theory of Stochastic Processes. II, Nauka, Moscow 1973; English translation: Springer, New York-Heidelberg 1975.
- [8] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and quasi-linear equations of parabolic type, Nauka, Moscow 1967; English translation: Transi. Math. Monographs, Vol. 23, Amer. Math. Soc., Providence, R. I., 1968.
- [9] T. J. Lyons and L. Stoica, The limits of stochastic integrals of differential forms, Ann. Probab. 27 (1999), pp. 1-49.
- [10] T. J. Lyons and W. A. Zheng, On conditional diffusion processes, Proc. Roy. Soc. Edinburgh 115A (1990), pp. 243-255.
- [11] Y. Oshima, On a construction of Markov processes associated with time dependent Dirichlet spaces, Forum Math. 4 (1992), pp. 395-415.
- [12] Y. Oshima, Some properties of Markov processes associated with time dependent Dirichlet forms, Osaka J. Math. 29 (1992), pp. 103-127.
- [13] A. Rozkosz, Weak convergence of diffusions corresponding to divergence form operators, Stochastics Stochastics Rep. 57 (1996), pp. 129-157.
- [14] A. Rozkosz, Stochastic representation of diffusions corresponding to divergence form operators, Stochastic Process. Appl. 63 (1996), pp. 11-33.
- [15] A. Rozkosz, On Dirichlet processes associated with second order divergence form operators, Potential Anal. 14 (2001), pp. 123-149.
- [16] A. Rozkosz and L. Słomiński, Extended convergence of Dirichlet processes, Stochastics Stochastics Rep. 65 (1998), pp. 79-109.
- [17] W. Stannat, The Theory of Generalized Dirichlet Forms and Its Applications in Analysis and Stochastics, Mem. Amer. Math. Soc. 142, No. 678 (1999), viii + 101 pp.
- [18] D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, New York 1979.
- [19] G. Trutnau, Stochastic calculus of generalized Dirichlet forms and applications to stochastic differential equations in infinite dimensions, Osaka J. Math. 37 (2000), pp. 315-343.
- [20] V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, G-convergence of parabolic operators, Uspekhi Mat. Nauk 36 (1981), pp. 11-58; English translation: Russian Math. Surveys 36 (1981), pp. 9-60.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afbf5e23-0dc0-48e9-84ae-88aee769f2c0