PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of temperature-dependent viscosity and thermal conductivity on velocity and temperature field: an analytical solution using the perturbation technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a general form of the perturbation expansion method for the governing equations of viscous flow coupled to the temperature evolution. The effect of the variations of viscosity and thermal conductivity with temperature on the temperature and velocity fields in a steady two-dimensional Couette–Poiseuille flow is examined. The presented analytical solution by the perturbation method is validated against a finite difference solution of the governing equations. The numerical and analytical solutions are in good agreement.
Rocznik
Strony
555--576
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Mechanical Engineering, Yasouj University, 75914-353 Yasouj, Iran,
  • Department of Mechanical Engineering, Yasouj University, 75914-353 Yasouj, Iran,
autor
  • Department of Mechanical Engineering, Yasouj University, 75914-353 Yasouj, Iran,
Bibliografia
  • 1. A.H. Nayfeh, Perturbation Methods, Wiley, New Jersey, 2004.
  • 2. M. van Dyke, Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, 1975.
  • 3. R.E. O’Malley Jr., Singular perturbation theory: a viscous flow out of Göttingen, Annual Review of Fluid Mechanics, 42, 1–17, 2010.
  • 4. B.C. Sakiadis, Boundary layer behavior on continuous solid surface, American Institute of Chemical Engineers, 7, 26–28, 1961.
  • 5. L.J. Crane, Flow past a stretching sheet, Zeitschrift für angewandte Mathematik und Physik, 21, 645–647, 1970.
  • 6. N.G. Kafoussias, E.W. Williams, The effect of temperature-dependent viscosity on free-forced convective laminar boundary layer flow past a vertical isothermal flat plate, Acta Mechanica, 110, 123–137, 1995.
  • 7. M. Xenos, Radiation effects on flow past a stretching plate with temperature-dependent viscosity, Applied Mathematics, 4, 1–5, 2013.
  • 8. E.M.A. Elbashbeshy, M.A.A. Bazid, The effect of temperature-dependent viscosity on heat transfer over a continuous moving surface, Journal of Physics D: Applied Physics, 33, 2716–2721, 2000.
  • 9. D. Pal, H. Mondal, Effect of variable viscosity on MHD non-Darcy mixed convective heat transfer over a stretching sheet embedded in a porous medium with non-uniform heat source/sink, Communications in Nonlinear Science and Numerical Simulation, 15, 1553–1564, 2010.
  • 10. S.H. Emerman, D.L. Turcotte, Stagnation flow with a temperature-dependent viscosity, Journal of Fluid Mechanics, 127, 507–517, 1983.
  • 11. J.R.A. Pearson, Variable-viscosity flows in channels with high heat generation, Journal of Fluid Mechanics, 83, 191–206, 1977.
  • 12. Y. Khan, Q. Wu, N. Faraz, A. Yildirim, The effects of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet, Computers and Mathematics with Applications, 61, 3391–3399, 2011.
  • 13. J.R. Booker, Thermal convection with strongly temperature-dependent viscosity, Journal of Fluid Mechanics, 76, 741–754, 1976.
  • 14. S.D. Giudice, C. Nonino, S. Savino, Effects of viscous dissipation and temperature-dependent viscosity in thermally and simultaneously developing laminar flows in microchannels, International Journal of Heat and Fluid Flow, 28, 15–27, 2007.
  • 15. M.A. Hossain, M.S. Munir, D.A.S. Rees, Flow of viscous incompressible fluid with temperature-dependent viscosity and thermal conductivity past a permeable wedge with uniform surface heat flux, International Journal of Thermal Sciences, 39, 635–644, 2000.
  • 16. H.A. Attia, Influence of temperature dependent viscosity on the MHD-channel flow of dusty fluid with heat transfer, Acta Mechanica, 151, 89–101, 2001.
  • 17. W. Yuan, A.C. Hansen, Q. Zhang,Predicting the temperature dependent viscosity of biodiesel fuels, Fuel, 88, 1120–1126, 2009.
  • 18. J.M. Avellaneda, F. Bataille, A. Toutant, DNS of turbulent low Mach channel flow under asymmetric high temperature gradient: Effect of thermal boundary condition on turbulence statistics, International Journal of Heat and Fluid Flow, 77, 40–47, 2019.
  • 19. W. Sutherland, The viscosity of gases and molecular force, Philosophical Magazine Series 5, 36, 223, 507–531, 2009.
  • 20. R. Ellahi, The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions, Applied Mathematical Modelling, 37, 1451–1467, 2013.
  • 21. L. Vergori, Flows at small Reynolds and Froude numbers, International Journal of Engineering Science, 48, 1659–1670, 2010.
  • 22. T.C. Chaim, Heat transfer in a fluid with variable conductivity over a linearly stretching sheet, Acta Mechanica, 129, 63–72, 1998.
  • 23. Ch.R. Lin, Ch.K. Chen, Effect of temperature dependent viscosity on the flow and heat transfer over an accelerating surface, Journal of Physics D: Appied Physics, 27, 29–36, 1994.
  • 24. M. Dehghan, M.S. Valipour, S. Saedodin, Temperature-dependent conductivity in forced convection of heat exchangers filled with porous media: A perturbation solution, Energy Conversion and Management, 91, 259–266, 2015.
  • 25. A. Moosaie, A nonlinear analysis of thermal stresses in an incompressible functionally graded hollow cylinder with temperature-dependent material properties, European Journal of Mechanics A/Solids, 55, 212–220, 2016.
  • 26. A. Moosaie, H. Panahi-Kalus, Thermal stresses in an incompressible FGM spherical shell with temperature-dependent material properties, Thin-Walled Structures, 120, 215–224, 2017.
  • 27. R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afbf1a2e-5f82-4593-998b-acb41ad0175f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.