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lution. The effect of the variations of viscosity and thermal conductivity with temper-
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Poiseuille flow is examined. The presented analytical solution by the perturbation
method is validated against a finite difference solution of the governing equations.
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1. Introduction

Material properties of fluids are thermodynamic properties, and
thus, they generally depend upon the temperature. The temperature dependency
of viscosity and thermal conductivity of fluids must be taken into account, if one
aims at obtaining more accurate results in thermofluid problems. Although such
a thorough analysis may not be of great relevance for water, it is indeed of
paramount importance for liquids like industrial lubrication oils and fossil fuels.
When the dependence of viscosity upon temperature is considered, the fluid
dynamics equations and the heat transfer equation are two-way coupled, i.e. there
is a mutual effect of one on the other. Such an interaction phenomenon between
the two fields usually complicates the analysis. Moreover, if one considers the
dependence of the heat conductivity upon the temperature, the heat equation
becomes nonlinear. Both effects hinder the analytical as well as the numerical
solution of the problem.

Since the governing equations are often nonlinear in most of the engineering
problems, they are of major complexity to be solved analytically. The pertur-
bation method is a well-established technique which is among the prominent
methods to analytically approach various kinds of non-linearities. The pertur-
bation technique gives efficient tools to obtain approximate solutions for a wide
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range of such problems. This approach is widely used for the problems which
do not have a known exact solution, but can be stated as a small change to
a solvable problem, see [1] for a general introduction to perturbation methods
as used in applied mechanics. A classic book on applications of the perturbation
method in fluid mechanics is [2]. A more recent review on applications in fluid
mechanics is given in [3].

Sakiadis [4] was one of the first investigators to study the behavior of boun-
dary-layer flow of a viscous fluid over a moving wall in different perspectives.
Crane [5] has explored an incompressible, two-dimensional, steady boundary-
layer flow over a stretching sheet in which the velocity linearly changes with the
distance from a stationary point. Kafoussias et al. [6] have studied the influence
of temperature dependence of viscosity on an incompressible fluid in steady lam-
inar mixed convective boundary layer over an isothermal flat plate. They have
solved the coupled ordinary differential equations with a numerical technique.
Xenos [7] has reported the radiation effects on flow past a stretching plate with
temperature-dependent viscosity. Numerous investigations have considered the
effects of temperature-dependent thermal conductivity and viscosity properties
in fluid. The effect of temperature dependence of viscosity on the heat transfer
over a steadily moving surface has been explored by Elbashbeshy et al. [8].
The vital features of heat transfer in an electrically conducting fluid with heat
generation and temperature-dependent viscosity have been investigated by Pal

and Mondal [9]. Solutions for two stagnation flows of an incompressible Newto-
nian fluid with exponentially temperature-dependent viscosity have been derived
by Emerman et al. [10]. Pearson [11] has presented a similarity solution for
a two-dimensional flow in a channel whose viscosity varies exponentially with
temperature. The similarity transformation has been used to reduce the time-
independent boundary-layer equations into coupled ordinary differential equa-
tions in order to examine the effects of temperature-dependent viscosity and
thermal conductivity on the flow and heat transfer over a horizontal shrinking
sheet by Khan et al. [12].

Booker [13] has experimentally investigated the heat transfer and the struc-
ture of convection in a high Prandtl number fluid layer whose viscosity is variable
with temperature. They have transformed the boundary-layer equations to ordi-
nary differential equations including a viscosity/temperature parameter and the
Prandtl number. Giudice et al. [14] have performed a numerical study consid-
ering a linear variation of viscosity with respect to temperature and examined
the effects of viscous dissipation in laminar flows through microchannels. Hos-

sain et al. [15] have considered a forced flow and heat transfer of a viscous
incompressible fluid in which viscosity and thermal conductivity vary with tem-
perature using appropriate transformations to reduce the governing equations
to non-similarity equations. Attia [16] has studied the effects of temperature-
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dependent viscosity and heat transfer on the Couette flow of a dusty fluid be-
tween two parallel plates with a uniform magnetic field which influences the
flow in the direction perpendicular to the walls. Yuan et al. [17] have developed
a method for predicting the temperature-dependent viscosity of biodiesel based
on fatty acid ester compositions. Avellaneda et al. [18] have performed a di-
rect numerical simulation (DNS) for a fully-developed low Mach turbulent flow
of an ideal gas in which the variation of viscosity and thermal conductivity are
assumed to be as presented by Sutherland [19].

Using analytical tools, Ellahi [20] has investigated the effects of various
physical parameters on velocity, temperature and nano-particle concentration in
a pipe by considering two correlations for the temperature-dependent viscosity.
Vergori [21] has probed the flows of fluids whose material properties vary ana-
lytically with temperature and pressure at small Reynolds and Froude numbers
in a horizontal channel. Chaim [22] has discussed the mathematical model of
two-dimensional axisymmetric fluid flows along a continuously stretching sheet
in which variable thermal conductivity and viscous dissipation are taken into
account.

Perturbation techniques are often used in order to solve non-linear equations
analytically. This method has always been a practical way for many researchers
and has been utilized in numerous works. Lin et al. [23] have considered two ap-
proaches to investigate the effect of temperature-dependent viscosity, a known
exponential function expressing the temperature-viscosity relation and using the
perturbation technique for small heat transfer rates. Their perturbation results
are in excellent agreement with those of the direct method. Dehghan et al. [24]
have analytically analyzed the impacts of temperature-dependent thermal con-
ductivity in a plane channel flow of a fluid-saturated porous medium based on
the perturbation methods. They have presented analytical relations for dimen-
sionless temperature profile and the Nusselt number for the first time. Their
work shows that there is a linear relation between thermal conductivity and the
Nusselt number. Moosaie [25] has proposed an analytical solution of thermal
stresses in a hollow cylinder with variable temperature-dependent material prop-
erties using the perturbation technique to solve the non-linear heat conduction
equation. Moosaie and Panahi-Kalus [26] have used the perturbation tech-
nique to analyze a non-linear static thermoelastic analysis of a hollow spherical
shell.

The main objective of the present work is to propose a general and novel
form of the perturbation technique in the symbolic form for conservation laws
of mass, momentum and energy. Moreover, the proposed form of conservation
equations is in the general tensor notation, independent of the coordinate system
applied. The temperature dependence of viscosity and thermal conductivity are
taken into account as well. The variations of viscosity and thermal conductivity
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with temperature are assumed to be linear. To the best of our knowledge, so
far this general form of the perturbation technique has not been yet presented
elsewhere. To put the work into a practical use, a numerical example of a channel
flow has been solved analytically for prescribed boundary conditions. In order
to validate the present study, the analytical solution has been compared to the
numerical one.

2. Theory and governing equations

Let us first consider the conservation laws including incompressible form of
continuity, momentum and energy equations in the differential form. Note that
u is the velocity and T is the temperature.

∇ · u = 0,(2.1)

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · S + k,(2.2)

ρc

(
∂T

∂t
+ (u · ∇)T

)
= ∇ · (λ∇T ) + q̇,(2.3)

where ∇, ρ, c, k, λ and q̇ are the nabla operator, density and specific heat,
external force, thermal conductivity and source term, respectively. The viscous
dissipation term is neglected in Eq. (2.3), which is a common practice for low-
speed incompressible flows. The stress tensor S for Newtonian fluids can be
written as

(2.4) S = −pE + µ(∇ ◦ u + u ◦ ∇),

in which µ is the dynamic viscosity and p is the pressure. In this work, µ is
assumed to depend upon the temperature, i.e. µ = µ(T ). Therefore, the first
term in the right-hand side of Eq. (2.2) can be expressed as

(2.5) ∇ · S = −∇p+
dµ

dT
[(∇T · ∇)u + ∇(∇T · u)] + µ∆u.

Substituting Eq. (2.5) into Eq. (2.2) yields

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+

dµ

dT
[(∇T · ∇)u + ∇(∇T · u)] + µ∆u + k,(2.6a)

ρcp

(
∂T

∂t
+ (u · ∇)T

)
=
dλ

dT
∇T · ∇T + λ∆T + q̇.(2.6b)

The above equations are coupled together. The variations of viscosity and
thermal conductivity are assumed to be linear functions of temperature [27]:

(2.7)

{
µ = µ0 − µ1T ; µ0 ≫ Trefµ1,

λ = λ0 + λ1T ; λ0 ≫ Trefλ1,
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in which Tref is a reference temperature. Since Trefµ1 and Trefλ1 are small com-
pared to µ0 and λ0 for some conventional fluids such as water, we can define the
following relations

(2.8) ε =
Trefµ1

µ0
, ε1 =

Trefλ1

λ0
.

Without any loss of generality, hereafter Tref is assumed to be unity. There-
fore, it will no more appear in the equations.

Using Eq. (2.7) and dividing by µ0 and λ0, the Navier–Stokes is

∇ · u = 0,(2.9a)

ρ

µ0

(
∂u

∂t
+ (u · ∇)u

)
(2.9b)

= −∇p− ε[(∇T · ∇)u + ∇(∇T · u)] + (1 − εT )∆u +
k

µ0
,

ρcp
λ0

(
∂T

∂t
+ (u · ∇)T

)
= ε1∇T · ∇T + (1 + ε1T )∆T +

q̇

λ0
.(2.9c)

The ratio of two small parameters ε and ε1 can be defined by β via

(2.10) β =
ε1
ε
.

In the above governing equation, we have two dimensionless small parameters
ε and ε1, which are multiplied to some nonlinear terms. Thus, it makes sense to
use the Poincare perturbation method to find an approximate analytical solution
of the problem. The method is based on an asymptotic power series expansion of
the dependent variables in terms of the small parameters, as done below. Then,
various orders of approximations are collected and linear differential equations
for different levels of approximation are found. The inhomogeneous boundary
conditions are enforced at the zeroth-order approximation and the rest of the
boundary-value problems are solved using homogeneous boundary conditions.
The details of the mathematical theory and applications in various fields of
engineering can be found in [1, 2].

So, the velocity and temperature fields can be expanded as power series of ε,
that is

u =
∞∑

n=0

εnun,(2.11)

T =
∞∑

n=0

(βε)nTn.(2.12)



560 H. Panahi-Kalus et al.

These expansions can be truncated at any order to give approximations of ve-
locity and temperature fields. The above equations up to the second-order ap-
proximation read

(2.13) u0 = u0, u1 = u0 + εu1, u2 = u0 + εu1 + ε2u2,

and

(2.14) T0 = T 0, T1 = T 0 + βεT 1, T2 = T 0 + βεT 1 + β2ε2T 2.

Substituting Eqs. (2.11) and (2.12) into Eq. (2.9) results in

∞∑

n=0

εn∇ · un = 0,(2.15a)

ρ

µ0

{ ∞∑

n=0

εn
∂un

∂t
+

[( ∞∑

n=0

εnun

)
· ∇

] ∞∑

n=0

εnun

}
(2.15b)

= − 1

µ0
∇p−

{[( ∞∑

n=0

(βε)nTn

)
· ∇

] ∞∑

n=0

εn+1
un

+ ∇
[( ∞∑

n=0

(βε)n∇Tn

)
·

∞∑

n=0

εn+1
un

]}

+

( ∞∑

n=0

εn∆un −
∞∑

n=0

(βε)nTn

∞∑

n=0

εn+1∆un

)
+

k

µ0
,

ρcp
λ0

{ ∞∑

n=0

(βε)n∂Tn

∂t
+

[( ∞∑

n=0

εnun

)
· ∇

] ∞∑

n=0

(βε)nTn

}
(2.15c)

=

( ∞∑

n=0

(βε)n+1∇Tn

)
·
( ∞∑

n=0

(βε)n∇Tn

)

+

(
1 +

∞∑

n=0

(βε)n+1Tn

) ∞∑

n=0

(βε)n∆Tn +
q̇

λ0
.

By collecting coefficients of like powers of ε0, the O(ε0) equation is obtained

∇ · u0 = 0,(2.16a)

ρ

µ0

[
∂u0

∂t
+ (u0 · ∇)u0

]
= − 1

µ0
∇p+ ∆u0 +

k

µ0
,(2.16b)

ρcp
λ0

[
∂T 0

∂t
+ (u0 · ∇)T 0

]
= ∆T 0 +

q̇

λ0
.(2.16c)
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Similarly, the O(ε1) equations read

∇ · u1 = 0,(2.17a)

ρ

µ0

[
∂u1

∂t
+ (u1 · ∇)u0 + (u0 · ∇)u1

]
(2.17b)

= −(∇T 0 · ∇)u0 −∇(∇T 0 · u0) + ∆u1 − T 0∆u0,

ρcp
λ0

[
∂T 1

∂t
+ (u1 · ∇)T 0 + (u0 · ∇)βT 1

]
(2.17c)

= +β∇T 0 · ∇T 0 + β∆T 1 + βT 0∆T 0.

Finally, the O(ε2) equations are

∇ · u2 = 0,(2.18a)

ρ

µ0

[
∂u2

∂t
+ (u2 · ∇)u0 + (u0 · ∇)u2 + (u1 · ∇)u1

]
(2.18b)

= −(β∇T 1 · ∇)u0 − (∇T 0 · ∇)u1

−∇(β∇T 1 · u0) −∇(∇T 0 · u1) + ∆u2 − βT 1∆u0 − T 0∆u1,

ρcp
λ0

[
∂T 2

∂t
+ (u2 · ∇)T 0 + (u1 · ∇)βT 1 + (u0 · ∇)β2T 2

]
(2.18c)

= β2∇T 1 · ∇T 0 + β2∇T 0 · ∇T 1 + β2∆T 2 + β2T 1∆T 0 + β2T 0∆T 1.

It shall be noted here that the zeroth-order equations correspond to the case
for which the viscosity and thermal conductivity are constant. Once they are
obtained, the zeroth-order results are substituted into the right-hand side of the
first-order equations. Again, by solving for the first-order solution, the results
are given to the right-hand side of the second-order equations. Theoretically, this
procedure can be continued up to any order.

The equations presented in this section are derived in the general tensor form,
which can be transformed into different coordinate systems and various geome-
tries. These series can be continued and more terms could be retained. However,
in this paper, we have restricted ourselves to the above order of approximation
and do not go any further.

3. Case study

In order to put the present perturbation technique into a practical use,
a numerical example is demonstrated. The problem which is considered here is
a two-dimensional Couette–Poiseuille flow with prescribed boundary conditions
as follows:
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(3.1)





u(y = 0) = ul,

u(y = H) = ud,

T (y = 0) = T l,

T (y = H) = T d,

in which u and T are respectively the prescribed velocities and temperatures at
the boundary. l and d indices imply lower and upper walls. The non-homoge-
neities of the boundary conditions are given to the zeroth-order approximation
and the boundary conditions for the higher-order approximations are homoge-
neous.

The derived general Eqs. (2.16), (2.17) and (2.18) are rewritten into the
Cartesian coordinate system for the considered problem. We assume the flow
problem to be steady-state, two-dimensional, fully-developed in the flow direc-
tion, with no source term and the external forces are assumed negligible as well.

By casting the O(ε0) momentum equation (2.16b) and energy equation (2.16c),
we have

ρ

µ0

(
u0
∂u0

∂x
+ v0

∂v0

∂y

)
= − 1

µ0

∂P

∂x
+

(
∂2u0

∂x2
+
∂2u0

∂y2

)
,(3.2a)

ρcp
λ0

(
u0
∂T 0

∂x
+ v0

∂T 0

∂y

)
=
∂2T 0

∂x2
+
∂2T 0

∂y2
.(3.2b)

By imposing the aforementioned assumptions, we have

∂2u0

∂y2
=

1

µ0

∂P

∂x
= A,(3.3a)

∂2T 0

∂y2
= 0,(3.3b)

so that the zeroth-order solution read

u0(y) =
1

2
Ay2 + C1,0y + C2,0,(3.4a)

T 0(y) = D1,0y +D2,0.(3.4b)

Now the general solution of O(ε0) is subjected to homogeneous boundary
conditions.

Applying the above boundary conditions to Eqs. (3.4) gives the integration
constants as

(3.5) C1,0 =
ud − ul

H
− A

2
H, C2,0 = ul, D1,0 =

T d − T l

H
, D2,0 = T l.
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By casting the O(ε1) momentum equation (2.17b) and energy equation (2.17c)
is

ρ

µ0

(
u1
∂u0

∂x
+ v1

∂v0

∂y
+ u0

∂u1

∂x
+ v0

∂v1

∂y

)
(3.6a)

= −∂T 0

∂x

∂u0

∂x
− ∂T 0

∂y

∂u0

∂y
− ∂T 0

∂x

∂u0

∂x

− ∂T 0

∂y

∂v0

∂x
+

(
∂2u1

∂x2
+
∂2u1

∂y2

)
− T 0

∂2u0

∂y2
,

ρcp
λ0

(
u1
∂T 0

∂x
+ v1

∂T 0

∂y
+ βu0

∂T 1

∂x
+ βv0

∂T 1

∂y

)
(3.6b)

= −β
[(

∂T 0

∂x

)2

+

(
∂T 0

∂y

)2]
+ β

(
∂2T 1

∂x2
+
∂2T 1

∂y2

)
− βT 0

∂2T 0

∂y2
.

Imposing the assumptions, we have

∂2u1

∂y2
=
∂T 0

∂y

∂u0

∂y
+ T 0

∂2u0

∂y2
,(3.7a)

∂2T 1

∂y2
= −

(
∂T 0

∂y

)2

− T 0
∂2T 0

∂y2
.(3.7b)

Solving these equations gives

u1(y) =
1

3
D1,0Ay

3 +
1

2
(C1,0D1,0 +AD2,0)y

2 + C1,1y + C2,1,(3.8a)

T 1(y) = −1

2
D2

1,0y
2 +D1,1y +D2,1.(3.8b)

The boundary conditions for the O(ε1) equations are homogeneous.
The integration constants are determined by applying the boundary condi-

tions as

(3.9)
C1,1 = −1

3
AD1,0H

2 − 1

2
(C1,0D1,0 +AD2,0)H,

C2,1 = 0, D1,1 =
1

2
D2

1,0H, D2,1 = 0.

Finally, the expansion of O(ε2) for momentum equation (2.18b) and energy
equation (2.18c) is
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ρ

µ0

(
u2
∂u0

∂x
+v2

∂v0

∂y
+u1

∂u1

∂x
+v1

∂v1

∂y
+u0

∂u2

∂x
+v0

∂v2

∂y

)
(3.10a)

= −β∂T 1

∂x

∂u0

∂x
− ∂T 0

∂x

∂u1

∂x
−β∂T 1

∂y

∂u0

∂y
− ∂T 0

∂y

∂u1

∂y

−β∂T 1

∂x

∂u0

∂x
−β∂T 1

∂y

∂v0

∂x
− ∂T 0

∂x

∂u1

∂x
− ∂T 0

∂y

∂v1

∂x
+
∂2u2

∂x2

+
∂2u2

∂y2
−βT 1

∂2u0

∂y2
−T 0

∂2u1

∂y2
,

ρcp
λ0

(
u2
∂T 0

∂x
+v2

∂T 0

∂y
+βu1

∂T 1

∂x
+βv1

∂T 1

∂y
+β2u0

∂T 2

∂x
+β2v0

∂T 2

∂y

)
(3.10b)

= β2

(
∂2T 2

∂x2
+
∂2T 2

∂y2

)
+β2

[
∂T 1

∂x

∂T 0

∂x
+
∂T 1

∂y

∂T 0

∂y

]

+β2

[
∂T 0

∂x

∂T 1

∂x
+
∂T 0

∂y

∂T 1

∂y

]
+β2T 1

∂2T 0

∂y2

+β2T 0

[(
∂T 0

∂x

)2

+

(
∂T 0

∂y

)2]
.

By applying the above-mentioned assumptions, we have

∂2u2

∂y2
= β

∂T 1

∂y

∂u0

∂y
+
∂T 0

∂y

∂u1

∂y
+ βT 1

∂2u0

∂y2
+ T 0

∂2u1

∂y2
,(3.11a)

∂2T 2

∂y2
= −2

∂T 1

∂y

∂T 0

∂y
− T 1

∂2T 0

∂y2
− T 0

(
∂T 0

∂y

)2

,(3.11b)

with the general solution

u2(y) =
1

12
γy4 +

1

6
Γy3 +

1

2
ξy2 + C1,2y + C2,2,(3.12a)

T 2(y) =
1

6
D3

1,0y
3 − 1

2
(2D1,0D1,1 +D2

1,0D2,0)y
2 +D1,2y +D2,2.(3.12b)

The boundary conditions for the O(ε2) equations are also homogeneous, which
yield the following integration constants

C1,2 = − 1

12
γH3 − 1

6
ΓH2 − 1

2
ξH, C2,2 = 0,

D1,2 = −1

6
D3

1,0H
2 +

1

2
(2D1,0D1,1 +D2

1,0D2,0)H, D2,2 = 0.
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For the convenience, the auxiliary parameters γ, Γ and ξ are defined as

γ = −AβD2
1,0 +AD2

1,0 −
1

2
AβD2

1,0 + 2AD2
1,0,

Γ = 2AβD1,1 − βC1,0D
2
1,0 + 2C1,0D

2
1,0 + 4AD1,0D2,0,

ξ = βC1,0D1,1 + C1,1D1,0 +AβD2,1 +AD2
2,0 + C1,0D1,0D2,0.

The velocity and temperature fields are calculated for different orders of ε to
give the follwing approximations up to O(ε2):

u2(y) = ε0
(

1

2
Ay2 + C1,0y + C2,0

)
(3.13a)

+ ε1
[
1

3
D1,0Ay

3 +
1

2
(C1,0D1,0 +AD2,0)y

2 + C1,1y + C2,1

]

+ ε2
(

1

12
γy4 +

1

6
Γy3 +

1

2
ξy2 + C1,2y + C2,2

)
,

T2(y) = ε0(D1,0y +D2,0) + ε1
(
−1

2
D2

1,0y
2 +D1,1y +D2,1

)
(3.13b)

+ ε2
[
1

6
D3

1,0y
3 − 1

2
(2D1,0D1,1 +D2

1,0D2,0)y
2 +D1,2y +D2,2

]
.

4. Numerical solution of the case study

The full nonlinear equations for fluid flow and heat transfer, i.e. Eqs. (2.9b)
and (2.9c), for the above-referenced case study reduce to

(1 − εT )
∂2u

∂y2
− ε

∂T

∂y

∂u

∂y
− ∂p

∂x
= 0,(4.1)

(1 − ε1T )
∂2T

∂y2
+ ε1

(
∂T

∂y

)2

= 0.(4.2)

The pressure gradient term ∂p/∂x in Eq. (4.1) is a known constant and thus, we
do not need any algorithm to compute the pressure by imposing the incompress-
ibility condition. The first- and second-order derivatives are discretized utilizing
the standard central finite difference schemes.

The finite difference approximations are substituted in the nonlinear equa-
tions (4.1) and (4.2). The resulting difference equations are solved by using
a pseudo time stepping method. An explicit Euler time integrator is employed
for this purpose. The time stepping was being performed until the steady state
was reached.
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5. Results and discussion

Equations for ε0, ε1 and ε2 are analytically solved and their solutions are
plotted for the prescribed boundary conditions. The values of used parameters
in the presented work are collected in Table 1.

Table 1. Numerical values of material properties [27].

Properties λ0

`
W

m·K

´
λ1

`
W

m·K2

´
µ0

`
N·s
m2

´
µ1

`
N·s

K·m2

´

Value 5.039 × 10−1 5.254 × 10−3 1.6099 × 10−3 3.04 × 10−5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

 y
[m

]

u [m/s]

O(ε0
)

O(ε1
)

O(ε2
)

numerical 

Fig. 1. Analytical and numerical solution of the velocity field at Td = 20◦C.
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Fig. 2. Analytical and numerical solution of the temperature field at Td = 20◦C.
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For the purpose of validation, the numerical solution of the full nonlinear
equations for the velocity and temperature fields is also reported. The numerical
results are obtained by a finite difference discretization of the governing equa-
tions using second-order central difference schemes and solved by a pseudo-time
iterative method. The domain length is 1.0 and 200 grid points are used for
the discretization. The grid independency of the results is checked. As a general
trend, it can be seen that the determined velocity and temperature profiles by
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Fig. 3. Temperature field at Td = 30◦C obtained by different orders of approximation.
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the perturbation expansion method is approaching the numerical solution by
increasing the order of approximation, this is shown in Fig. 1 and Fig. 2. In
Figs. 3, 4 and 5, the temperature field at Td = 30◦C, Td = 40◦C and Td = 50◦C
for different order of approximation in respect of the channel height is depicted
respectively, obviously an increase in the upper wall temperature Td makes a dif-
ference in the responses obtained by ε0, ε1 and ε2.

Physically speaking, it is evident that with increasing the temperature in
liquids, the viscosity decreases so that the fluid elements adjacent to the high-
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Fig. 5. Temperature field at Td = 50◦C obtained by different orders of approximation.
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Fig. 6. Velocity field at Td = 30◦C obtained by different orders of approximation.
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temperature wall are moving faster than those adjacent to the low-temperature
wall. In this work, the effect of temperature on the viscosity is considered, thus,
it is expected that the symmetry of the velocity profile is altered and the loca-
tion of the maximum velocity moves from the channel center towards the high-
temperature wall. Additionally, the mass flow rate (ṁ) throughout the channel
is increased, as compared to the case of isothermal walls at the lower temper-
ature. Figures 6, 7 and 8 show the velocity field at Td = 30◦C, Td = 40◦C
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Fig. 7. Velocity field at Td = 40◦C obtained by different orders of approximation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5

 y
[m

]

u [m/s]

O(ε0
)

O(ε1
)

O(ε2
)

Fig. 8. Velocity field at Td = 50◦C obtained by different orders of approximation.
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and Td = 50◦C for different order approximation and proves the aforementioned
sentences. Figure 9 depicts the velocity field at different temperatures Td only
for second-order solution (ε2). By increasing the temperature the velocity also
increases, as mentioned above the maximum velocity moves towards the upper
wall which has the highest temperature. Figures 10–14 show the shear stress at
different temperatures of the upper wall and different ε. As it can be seen the
shear stress profile is deviated from a linear form to a curved one, as well as the
critical point of shear stress tends to move towards the high-temperature wall Td.
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Fig. 9. Velocity field at different temperatures for O(ε2).
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Figure 15 is plotted to show the effect of increasing the upper wall temperature
on the maximum velocity, it can be seen that with increasing the upper wall
temperature the maximum velocity increases.

With improving the expansion series in the perturbation technique this agree-
ment will also be enhanced. The velocity and temperature expansion series can
be truncated after more terms to increase the accuracy of the solution.

Figure 16 shows the location of the maximum velocity as a function of the
upper wall temperature for different orders of approximation. As it is expected,
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Fig. 11. Shear stress (τxy) at Td = 30◦C obtained by different orders of approximation.
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Fig. 12. Shear stress (τxy) at Td = 40◦C obtained by different orders of approximation.
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for the linear solution O(ε0), the location at which the maximum velocity occurs
is located at 0.5h. This pertains to the case with no temperature dependence of
the fluid properties. However, by the introduction of the nonlinearity, the situa-
tion differs and the location of the maximum velocity changes by changing the
upper-wall temperature. The O(ε1) solution underpredicts y(umax) as compared
to the O(ε2) solution. In any case, we have y(umax) = 0.5h for the vanishing
temperature difference, which is expected.
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Fig. 13. Shear stress (τxy) at Td = 50◦C obtained by different orders of approximation.
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Fig. 16. Variation of the wall-normal location of maximum velocity (yumax
) with respect to

the upper-wall temperature obtained from different orders of approximation and a numerical
solution of the full nonlinear equation.

6. Conclusions

In this paper, a general form of using the perturbation expansion technique
is presented, the proposed form is independent of any system of coordinates. The
effect of the temperature-dependent viscosity and thermal conductivity on the
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velocity and temperature profiles in a steady two-dimensional Couette-Poiseuille
flow is analytically investigated and validated against the numerical solution. The
variations of viscosity and thermal conductivity with temperature are considered
to be linear functions. Increasing the order of ε for the perturbation expansion
series leads to more accurate predictions for the temperature and velocity fields.
Results show the maximum value of velocity in the channel is moving from the
center for the O

(
ε0

)
solution towards the high-temperature wall for the higher

order of ε. The analytical solution of the shear stress for the different orders of
ε at different temperatures of the upper wall is determined. It is clear from the
results when the temperature of the upper wall increases the critical point of the
shear stress transfers towards the high temperature wall, this is for the reduction
in viscosity.

We gave a general formulation of the perturbation method for the fully cou-
pled problem. Though, its solution for all problems would not be an easy task
to do. However, any problem for which a solution of momentum and energy
equations exist for the constant properties case, this solution can be taken as
the zeroth-order solution and higher-order approximations can be made based
on that.
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