PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Nanofluids containing conductive nanoparticles: the review of thermal and electrical properties. Selected applications in electrical and thermal engineering, and energy sector

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nanofluidy zawierające przewodzące nanocząsteczki: przegląd właściwości cieplnych i elektrycznych. Wybrane zastosowania w elektrotechnice i inżynierii cieplnej oraz sektorze energetycznym
Języki publikacji
EN
Abstrakty
EN
This paper presents a brief review of the thermal and electrical properties of nanofluids containing metallic, metallic oxide, graphene nanoparticles, as well as carbon nanotubes. The key factors, such as the alignment of magnetic NPs, NPs size and shape, pH of the base fluid, surfactants, solvents, temperature, base fluid, and NPs types, that demonstrate a significant impact on the thermo-electrical properties of nanofluids are analyzed. The applications of nanofluids in transformers (oil, cores, paper impregnation), PVT systems, and hydrogen production are described.
PL
W pracy przedstawiono przegląd właściwości termicznych i elektrycznych nanocieczy zawierających metale, tlenki metali, nanocząstki grafenu oraz nanorurki węglowe. Przeanalizowano kluczowe czynniki, takie jak ustawienie magnetycznych cząstek, ich wielkość i kształt, pH płynu bazowego, środki powierzchniowo czynne, rozpuszczalniki, temperatura, rodzaje cząstek i płynów, które wykazują znaczący wpływ na właściwości termoelektryczne nanocieczy. Opisano zastosowania nanocieczy w transformatorach, układach PVT i produkcji wodoru.
Rocznik
Strony
104--109
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
  • Lublin University of Technology, Department of Electrical Engineering and Superconducting Technologies, 38A Nadbystrzycka St., 20-618 Lublin, Poland
  • Lublin University of Technology, Department of Electrical Engineering and Superconducting Technologies, 38A Nadbystrzycka St., 20-618 Lublin, Poland
  • Kumamoto University, Faculty of Advanced Science and Technology, Kurokami 2-39-1, Kumamoto 860-8555, Japan
  • Kumamoto University, Faculty of Advanced Science and Technology, Kurokami 2-39-1, Kumamoto 860-8555, Japan
  • Sumy State University, Electric Power Engineering Department, 2 Rymskogo-Korsakova St., Sumy, 40007, Ukraine
Bibliografia
  • [1] Gorji T.B., Ranjbar A.A., A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs), Renewable and Sustainable Energy Reviews, 72 (2017), 10-32
  • [2] Hassan Y.M., Guan B.H., Zaid H.M., Hamza M.F., Adil M., Adam A.A., Hastuti K., Application of Magnetic and Dielectric Nanofluids for Electromagnetic-Assistance Enhanced Oil Recovery: A Review, Crystals, 11 (2021); nr 2, 106
  • [3] Biliak K., Protsak M., Pleskunov P., Nikitin D., Hanus J., AliOgly S., Somvársky J., Tosca M., Cieslar M., Kosutová T., Dopita M., Ferreira F.L., Choukourov A., Plasmonic TiN, ZrN, and HfN Nanofluids for Solar-to-Heat Conversion, ACS Applied Nano Materials, 6 (2023), nr 23, 21642-21651
  • [4] Koltunowicz T.N., Zukowski P., Boiko O., Fedotov A.K., Larkin A., Presence of Inductivity in (CoFeZr)x(PZT)1-x Nanocomposite Produced by Ion Beam Sputtering, Acta Physica Polonica A, 128 (2015), nr 5, 853-856
  • [5] Boiko O., Drozdenko D., Minárik P., Dielectric properties, polarization process, and charge transport in granular (FeCoZr)x(Pb(ZrTi)O3)(100-x) nanocomposites near the percolation threshold, AIP Advances, 12 (2022), nr 2, 025306
  • [6] Boiko O., Granular metal-dielectric nanocomposites as an alternative to passive SMD, Przeglad Elektrotechniczny, 96 (2020), nr 12, 158-161
  • [7] Pogrebnjak A.D., Bondar O.V., Borba S.O., Piotrowska K., Boiko O., Structure and Physicomechanical Properties of Nanostructured (TiHfZrNbVTa)N Coatings after Implantation of High Fluences of N+ (1018 cm-2), Acta Physica Polonica A, 132 (2017), nr 2, 217-221
  • [8] Devendiran D.K., Amirtham V.A., A review on preparation, characterization, properties and applications of nanofluids, Renewable and Sustainable Energy Reviews, 60 (2016), 21-40
  • [9] Rafiq M., Shafique M., Azam A., Ateeq M., Transformer oilbased nanofluid: The application of nanomaterials on thermal, electrical and physicochemical properties of liquid insulation-A review, Ain Shams Engineering Journal, 12 (2021), nr 1, 555576
  • [10] Lee S., Choi S.U.S., Li S., Eastman J.A., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, Journal of Heat Transfer-Transactions of the ASME, 121 (1999), nr 2, 280-289
  • [11] Xuan Y.M., Li Q., Heat transfer enhancement of nanofluids, International Journal of Heat and Fluid Flow, 21 (2000), nr 1, 58-64
  • [12] Ali A.I., Salam B., A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application, SN Applied Sciences, 2 (2020), nr 10, 1636
  • [13] Ali H.M., Babar H., Shah T.R., Sajid M.U., Qasim M.A., Javed S., Preparation Techniques of TiO2 Nanofluids and Challenges: A Review, Applied Sciences, 8 (2018), nr 4, 587
  • [14] Choukourov A., Nikitin D., Pleskunov P., Tafiichuk R., Biliak K., Protsak M., Kishenina K., Hanus J., Dopita M., Cieslar M., Popelar T., Ondic L., Varga M., Residual- and linker-free metal/polymer nanofluids prepared by direct deposition of magnetron-sputtered Cu nanoparticles into liquid PEG, Journal of Molecular Liquids, 336 (2021), 116319
  • [15] Sharma B., Sharma S.K., Gupta S.M., Kumar A., Modified TwoStep Method to Prepare Long-Term Stable CNT Nanofluids for Heat Transfer Applications, Arabian Journal for Science and Engineering, 43 (2018), nr 11, 6155-6163
  • [16] Ali N., Teixeira J.A., Addali A., Aluminium Nanofluids Stability: A Comparison between the Conventional Two-Step Fabrication Approach and the Controlled Sonication Bath Temperature Method, Journal of Nanomaterials, 2019 (2019), 3930572
  • [17] Lopez I., Younes H., Almheiri S., Al Ghaferi A., Abu Al-Rub R., Highly electrically conductive carbon nanostructured mats fabricated out of aligned CNTs-based flakes, Diamond and Related Materials, 106 (2020), 107489
  • [18] Younes H., Christensen G., Hong H., Peterson G.P., Alignment of Different Functionalized Single Wall Carbon Nanotubes Using Fe2O3 Nanoparticles Under External Magnetic Field, Journal of Nanofluids, 2 (2013), nr 1, 4-10
  • [19] Hong H.P., Wright B., Wensel J., Jin S.H., Ye X.R., Roy W., Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube, Synthetic Metals, 157 (2007), nr 10-12, 437-440
  • [20] Horton M., Hong H.P., Li C., Shi B., Peterson G.P., Jin S.H., Magnetic alignment of Ni-coated single wall carbon nanotubes in heat transfer nanofluids, Journal of Applied Physics, 107 (2010), nr 10, 104320
  • [21] Younes H., Mao M.Y., Murshed S.M.S., Lou D., Hong H.P., Peterson G.P., Nanofluids: Key parameters to enhance thermal conductivity and its applications, Applied Thermal Engineering, 207 (2022), 118202
  • [22] Ambreen T., Kim M.H., Influence of particle size on the effective thermal conductivity of nanofluids: A critical review, Applied Energy, 264 (2020), 114684
  • [23] Kumar D.H., Patel H.E., Rajeev Kumar V.R., Sundararajan T., Pradeep T., Das S.K., Model for Heat Conduction in Nanofluids, Physical Review Letters, 93 (2004), 144301
  • [24] Xie H., Wang J., Xi T., Liu Y., Ai F., Wu Q., Thermal conductivity enhancement of suspensions containing nanosized alumina particles, Journal of Applied Physics, 91 (2002), 4568–4572
  • [25] Leong K.Y., Razali I., Ahmad K.Z.K., Ong H.C., Ghazali M.J., Rahman M.R.A., Thermal conductivity of an ethylene glycol/water-based nanofluid with copper-titanium dioxide nanoparticles: An experimental approach, International Communications in Heat and Mass Transfer, 90 (2018), 23-28
  • [26] Kumar M.S., Vasu V., Gopal A.V., Thermal conductivity and rheological studies for Cu–Zn hybrid nanofluids with various basefluids, Journal of the Taiwan Institute of Chemical Engineers, 66 (2016), 321-327
  • [27] Wusiman K., Jeong H., Tulugan K., Afrianto H., Chung H., Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS, International Communications in Heat and Mass Transfer, 41 (2013), 28-33
  • [28] Liu S.T., Tian M., Yan B.Y., Yao Y., Zhang L.Q., Nishi T., Ning N.Y., High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes, Polymer, 56 (2015), 375-384
  • [29] Christensen G., Younes H., Hong H.P., Smith P., Effects of solvent hydrogen bonding, viscosity, and polarity on the dispersion and alignment of nanofluids containing Fe2O3 nanoparticles, Journal of Applied Physics, 118 (2015), nr 21, 214302
  • [30] Christensen G., Yang J., Lou D., Hong G., Hong H.P., Tolle C., Widener C., Bailey C., Hrabe R., Younes H., Carbon nanotubes grease with high electrical conductivity, Synthetic Metals, 268 (2020), 116496
  • [31] Murshed S.M.S., de Castro C.A.N., Superior thermal features of carbon nanotubes-based nanofluids – A review, Renewable and Sustainable Energy Reviews, 37 (2014), 155-167
  • [32] Madhesh D., Parameshwaran R., Kalaiselvam S., Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids, Experimental Thermal and Fluid Science, 52 (2014), 104-115
  • [33] Hemmat Esfe M., Afrand M., Karimipour A., Yan W.M., Sina N., An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol, International Communications in Heat and Mass Transfer, 67 (2015), 173-175
  • [34] Rodriguez-Laguna M.R., Castro-Alvarez A., Sledzinska M., Maire J., Costanzo F., Ensing B., Pruneda M., Ordejón P., Torres C.M.S., Gómez-Romero P., Chávez-Angel E., Mechanisms behind the enhancement of thermal properties of graphene nanofluids, Nanoscale, 10 (2018), 15402-15409
  • [35] Shamshuddin M.D., Eid M.R., Magnetized nanofluid flow of erromagnetic nanoparticles from parallel stretchable rotating disk with variable viscosity and thermal conductivity, Chinese Journal of Physics, 74 (2021), 20-37
  • [36] Eid M.R., Mabood F., Entropy analysis of a hydromagnetic micropolar dusty carbon NTs-kerosene nanofluid with heat generation: Darcy–Forchheimer scheme, Journal of Thermal Analysis and Calorimetry, 143 (2021), 2419–2436
  • [37] Sidik N.A.C., Jamil M.M., Japar W.M.A.A., Adamu I.M., A review on preparation methods, stability and applications of hybrid nanofluids, Renewable & Sustainable Energy Reviews, 80 (2017), 1112-1122
  • [38] Du B.X., Li X.L., Li J., Thermal Conductivity and Dielectric Characteristics of Transformer Oil Filled with BN and Fe3O4 Nanoparticles, IEEE Transactions on Dielectrics And Electrical Insulation, 22 (2015), nr 5, 2530-2536
  • [39] Du B., Li J., Wang F., Yao W., Yao S., Influence of Monodisperse Fe3O4 Nanoparticle Size on Electrical Properties of Vegetable Oil-Based Nanofluids, Journal of Nanomaterials, 2015 (2015), 560352
  • [40] Traciak J., Cabaleiro D., Vallejo J.P., Fal J., Thermophysical and Electrical Properties of Ethylene Glycol-Based Nanofluids Containing CaCO3, Processes, 12 (2024), nr 1, 172
  • [41] Hadadian M., Goharshadi E.K., Youssefi A., Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids, Journal of Nanoparticle Research, 16 (2014), nr 12, 2788
  • [42] Vallejo J.P., Żyła G., Ansia L., Fal J., Traciak J., Lugo L., Thermophysical, rheological and electrical properties of mono and hybrid TiB2/B4C nanofluids based on a propylene glycol: water mixture, Powder Technology, 395 (2022), 391–399
  • [43] Khalid S., Zakaria I., Azmi W.H., Mohamed W.A.N.W., Thermal electrical–hydraulic properties of Al2O3–SiO2 hybrid nanofluids for advanced PEM fuel cell thermal management, Journal of Thermal Analysis and Calorimetry, 143 (2021), 1555–1567
  • [44] Maharana M., Bordeori M.M., Nayak S.K., Sahoo N., Nanofluid-based transformer oil: effect of ageing on thermal, electrical and physicochemical properties, IET Science Measurement & Technology, 12 (2018), nr 7, 878-885
  • [45] Tsai T.H., Chen P.H., Lee D.S., Yang C.T., Investigation of electrical and magnetic properties of ferro-nanofluid on transformers, Nanoscale Research Letters, 6 (2011), 264
  • [46] Amin D., Walvekar R., Khalid M., Vaka M., Mubarak N.M., Gupta T.C.S.M., Recent Progress and Challenges in Transformer Oil Nanofluid Development: A Review on Thermal and Electrical Properties, IEEE Access, 7 (2019), 151422151438
  • [47] Du B., Liu Q., Shi Y., Zhao Y., The Effect of Fe3O4 Nanoparticle Size on Electrical Properties of Nanofluid Impregnated Paper and Trapping Analysis, Molecules, 25 (2020), 3566
  • [48] Ibrahim A., Ramadan M.R., Khallaf A., Abdulhamid M., A comprehensive study for Al2O3 nanofluid cooling effect on the electrical and thermal properties of polycrystalline solar panels in outdoor conditions, Environmental Science and Pollution Research, 30 (2023), nr 49, 106838-106859
  • [49] Liu K.Q., Wang N., Pan Y., Alahmadi T.A., Alharbi S.A., Jhanani G.K., Brindhadevi K., Photovoltaic thermal system with phase changing materials and MWCNT nanofluids for high thermal efficiency and hydrogen production, Fuel, 335 (2024), 129457
  • [50] Wei S.H., Balakin B.V., Kosinski P., Investigation of nanofluids in alkaline electrolytes: Stability, electrical properties, and hydrogen production, Journal of Cleaner Production, 414 (2023), 137723
  • [51] Wei S.A., Hikmati J., Balakin B.V., Kosinski P., Experimental study of hydrogen production using electrolyte nanofluids with a simulated light source, International Journal of Hydrogen Energy, 47 (2022), nr 12, 7522-7534
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afbeb14e-daf2-4ec3-afa9-178e5d909f74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.