PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and optimization analysis of pylon open lower corbel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study, centered around the engineering context of the Wuxue Yangtze River Bridge, addresses the challenge of significant temperature-induced secondary internal forces in the short lower tower column. A novel open lower corbel tower scheme is proposed as a solution. Firstly, comprehensive finite element models are established for both the open lower corbel pylon scheme and the traditional lower continuous beam pylon scheme. These models are employed for finite element analysis to derive bending moments and displacements of the bridge pylon under various loads, including permanent, vehicle, temperature, and wind loads. Subsequently, considering internal force distribution and stiffness, a comparative assessment is made between the open lower corbel cable pylon scheme and the traditional lower continuous beam cable pylon scheme. The findings reveal that the open corbel structure bridge pylon exhibits lower transverse bending moment values under the influence of permanent load, vehicle load, temperature load, and wind load. This reduction is advantageous for mitigating the issue of significant temperature-induced secondary internal forces in the bridge pylon. Additionally, the transverse bridge stiffness of the open lower corbel cable pylon scheme is found to be on par with that of the lower continuous beam cable pylon scheme. Moreover, topology optimization of the original corbel design is accomplished using the relative density method. The computational results demonstrate that the corbel’s stress and deformation under vertical loads meet code requirements. These research findings offer valuable insights for the design and construction of similar projects.
Twórcy
autor
  • The 1st Engineering Company Limited, China Railway Construction Bridge Engineering Bureau Group, Dalian, China
Bibliografia
  • [1] C. Shao, “Composite Girder Cable-Stayed Bridge”, in Cable Supported Composite Bridges, C. Shao, Ed. Singapore: Springer Nature Singapore, 2023, pp. 65-219, doi: 10.1007/978-981-99-3208-5_3.
  • [2] W. Podolny and J.F. Fleming, “Historical development of cable-stayed bridges”, Journal of the Structural Division, vol. 98, no. 9, pp. 2079-2095, 1972.
  • [3] K. Żółtowski, “Cable-stayed bridges. Basic static schemes”, Archives of Civil Engineering, vol. 67, no. 4, pp. 5-26, 2021, doi: 10.24425/ace.2021.138483.
  • [4] D. Su, Y.-S. Liu, X.-T. Li, X.-Y. Chen, and D.-H. Li, “Management path of concrete beam bridge in China from the perspective of sustainable development”, Sustainability, vol. 12, no. 17, art. no. 7145, 2020, doi: 10.3390/su12177145.
  • [5] Ö. F. Kültür, A. Al-Masri, and B. Sayin, “Effect of high temperature exposure on design parameters and collapse behavior of reinforced concrete and steel-framed buildings”, Case Studies in Construction Materials, vol. 17, art. no. e01263, 2022, doi: 10.1016/j.cscm.2022.e01263.
  • [6] L. Zhu, et al., “Temperature effect on cable force of a special-shaped tied-arch bridge”, Heliyon, vol. 8, no. 11, art. no. e11253, 2022, doi: 10.1016/j.heliyon.2022.e11253.
  • [7] M. Ito, “Cable-supported steel bridges: Design problems and solutions”, Journal of Constructional Steel Research, vol. 39, no. 1, pp. 69-84, 1996, doi: 10.1016/0143-974X(96)00026-0.
  • [8] C. Song, R. Xiao, B. Sun, Z. Wang, and C. Zhang, “Cable force optimization of cable-stayed bridges: A surrogate model-assisted differential evolution method combined with B-Spline interpolation curves”, Engineering Structures, vol. 283, art. no. 115856, 2023, doi: 10.1016/j.engstruct.2023.115856.
  • [9] J. Guo and Z. Guan, “Optimization of the cable forces of completed cable-stayed bridges with differential evolvolution method”, Structures, vol. 47, pp. 1416-1427, 2023, doi: 10.1016/j.istruc.2022.12.004.
  • [10] Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts, 2018. Available: https://www.nssi.org.cn/nssi/front/108570340.html.
  • [11] O. Sigmund and K. Maute, “Topology optimization approaches”, Structural and Multidisciplinary Optimization, vol. 48, no. 6, pp. 1031-1055, 2013, doi: 10.1007/s00158-013-0978-6.
  • [12] D. Yago, J. Cante, O. Lloberas-Valls, and J. Oliver, “Topology Optimization methods for 3D Structural problems: a comparative study”, Archives of Computational Methods in Engineering, vol. 29, no. 3, pp. 1525-1567, 2022, doi: 10.1007/s11831-021-09626-2.
  • [13] H. Han, Y. Guo, S. Chen, and Z. Liu, “Topological constraints in 2D structural topology optimization”, Structural and Multidisciplinary Optimization, vol. 63, no. 1, pp. 39-58, 2021, doi: 10.1007/s00158-020-02771-5.
  • [14] G. Fiuk and M. W. Mrzygłód, “Numerical benchmarks for topology optimization of structures with stress constraints”, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 69, no. 6, art. no. e139317, 2021, doi: 10.24425/bpasts.2021.139317.
  • [15] H. Cui, L. Xie, M. Xiao, and M. Deng, “Conceptual design of reinforced concrete structures using truss-like topology optimization”, Archives of Civil Engineering, vol. 68, no. 3, pp. 523-537, 2022, doi: 10.24425/ace.2022.141900.
  • [16] S. Shi, P. Zhou, and Z. Lü, “A density-based topology optimization method using radial basis function and its design variable reduction”, Structural and Multidisciplinary Optimization, vol. 64, no. 4, pp. 2149-2163, 2021, doi: 10.1007/s00158-021-02972-6.
  • [17] Y. Liu, C. Yang, P. Wei, P. Zhou, and J. Du, “An ODE-driven level-set density method for topology optimization”, Computer Methods in Applied Mechanics and Engineering, vol. 387, art. no. 114159, 2021, doi: 10.1016/j.cma.2021.114159.
  • [18] L. Xue, J. Liu, G. Wen, and H. Wang, “Efficient, high-resolution topology optimization method based on convolutional neural networks”, Frontiers of Mechanical Engineering, vol. 16, no. 1, pp. 80-96, 2021, doi: 10.1007/s11465-020-0614-2.
  • [19] L. Siva Rama Krishna, N. Mahesh, and N.Sateesh, “Topology optimization using solid isotropic material with penalization technique for additive manufacturing”, Materials Today: Proceedings, vol. 4, no. 2, Part A, pp. 1414-1422, 2017, doi: 10.1016/j.matpr.2017.01.163.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afbd246d-83d3-499e-858a-bb3754d5e558
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.