PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

On the existence of moments of stopped sums in Markov renewal theory

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let (Mn)n ≥ 0 be an ergodic Markov chain on a general state space X with stationary distribution π and g: X → [0, ∞) a measurable function. Define S0 (g)def = 0 and Sn (g)def = g (M1) +…+ g (Mn) for n ≥ 1. Given any stopping time T for (Mn)n ≥ 0 and any initial distribution ν for (Mn)n ≥ 0, the purpose of this paper is to provide suitable conditions for the finiteness of Eν ST (g)p for p > 1. A typical result states that Eν ST (g)p ≤ C1 (Eν ST (gp) + Eν Tp) + C2 for suitable finite constants C1, C2. Our analysis is based to a large extent on martingale decompositions for Sn (g) and on drift conditions for the function g and the transition kernel P of the chain. Some of the results are stated under the stronger assumption that (Mn)n ≥ 0 is positive Harris recurrent in which case stopping times T which are regeneration epochs for the chain are of particular interest. The important special case where T = T(t)def = inf {n ≥ 1: Sn (g) > t} for t ≥ 0 is also treated.
Rocznik
Strony
389--411
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Institut für Mathematische Statistik, Fachbereich Mathematik, Westfälische Wilhelms-Universität Münster, Einsteinstraβe 62, D-48149 Münster, Germany
Bibliografia
  • [1] G. Alsmeyer and A. Gut, Limit theorems for stopped functionals of Markov renewal theory, Ann. Inst. Statist. Math. 51 (1999), pp. 369-382.
  • [2] G. Alsmeyer and V. Hoefs, Markou renewal theory for stationary m-block factors, Markov Proc. Rel. Fields 7 (2001), pp. 325-348.
  • [3] S. Asmussen, Applied Probability and Queues, Wiley, New York 1987.
  • [4] M. Benda, A central limit theorem for contractive dynamical systems, J. Appl. Probab. 35 (1998), pp. 200-205.
  • [5] R. Bhattacharrya and O. Lee, Asymptotics for a class of Markov processes that are not in general irreducible, Ann. Probab. 16 (1988), pp. 1333-1347. Correction in: Ann. Probab. 25 (1997), pp. 1541-1543.
  • [6] C. D. Fuh and T. L. Lai, Wald's equations, first passage times and moments of ladder variables in Markov random walks, J. Appl. Probab. 35 (1998), pp. 566-580.
  • [7] C. D. Fuh and C. H. Zhang, Poisson equation, maximal inequalities and r-quick convergence for Markov random walks, Stochastic Process. Appl. 87 (2000), pp. 53-67.
  • [8] M. I. Gordin and B. A. Lifsic, Central limit theorems for stationary Markov processes, Dokl. Akad. Nauk SSSR 239 (1978), pp. 766-767.
  • [9] A. Gut, Stopped Random Walks. Limit Theorems and Applications, Springer, New York 1988.
  • [10] S. Janson, Renewal theory for m-dependent variables, Ann. Probab. 11 (1983), pp. 558-568.
  • [11] M. Maxwell and M. Woodroofe, Central limit theorems for additive functionals of Markov chains, Ann. Probab. 28 (2000), pp. 713-724.
  • [12] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, London 1993.
  • [13] W. B. Wu and M. Woodroofe, A central limit theorem for iterated random functions, J. Appl. Probab. 37 (2000), pp. 748-755.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afbcf2bd-3b61-44d0-b5a8-4174fe816680
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.