Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article describes an apparatus for testing viscoplastic metallic alloys in tension at temperatures up to 400ºC. Its distinctive feature is a two-shelled furnace which encompasses the test-piece. The extensometer is attached to the shoulders of the specimen and remains outside the oven, so that it works at room temperature. The strain εrs in the reduced section inside the tight fitting oven is calculated with the help of a finite element software from the strain εext given by the extensometer. In the elastic range, the set-up was used for the measurement of Young’s moduli. In the plastic and viscoplastic ranges, it was used to draw work-hardening curves and to perform relaxation tests representative of in-service conditions. In this later case, a method to derive the strain rate sensitivity from the decrease with time of the registered stress is presented. The furnace can be easily machined in a mechanical workshop for all shapes and dimensions of test-pieces, so that it can be adapted to various studies of the workability of metallic alloys, especially those which necessitate a rapid rise and precise maintenance in temperature.
Czasopismo
Rocznik
Tom
Strony
75--106
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Mines Saint-Etienne, Université de Lyon, CNRS, UMR 5307 LGF, Centre SMS, F – 42023 Saint-Etienne France
autor
- Mines Saint-Etienne, Université de Lyon, CNRS, UMR 5307 LGF, Centre SMS, F – 42023 Saint-Etienne France
autor
- Mines Saint-Etienne, Université de Lyon, CNRS, UMR 5307 LGF, Centre SMS, F – 42023 Saint-Etienne France
Bibliografia
- 1. ASM Metal Handbook, Vol. 8, Mechanical Testing and Evaluation, H. Kuhn and D. Medlin [eds.], ASM International, Materials Park, OH 44073-0002, 2000.
- 2. F. Montheillet, Ch. Desrayaud, Essais rhéologiques à chaud (Rheological tests at elevated temperatures), Techniques de l’ingénieur, M3009, June 2009.
- 3. D. Fabrègue, O. Bouaziz, D. Barbier, Nano-twinned steel exhibits high mechanical properties obtained through ultra-rapid heat treatment, Materials Science & Engineering, A, 712, 765–771, 2018.
- 4. J. Codrington, P. Nguyen, S.Y. Ho, A. Kotousov, Induction heating apparatus for high temperature testing of thermo-mechanical properties, Applied Thermal Engineering, 29, 2783–2789, 2009.
- 5. Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM E21, West Conshohocken PA: ASTM International, 2020.
- 6. D. Zymełka, S. Saunier, J. Molimard, D. Goeuriot, Contactless Monitoring of Shrinkage and Temperature Distribution during Hybrid Microwave Sintering, Wiley online library, 2011.
- 7. P. Luong, R. Bonnaire, J.N. Périé, Q. Sirvin, L. Penazzi, Speckle Pattern Creation Methods for Two-dimensional Digital Image Correlation Strain Measurements Applied to Mechanical Tensile Tests up to 700_C, Wiley online library, 2021.
- 8. J. Lemaitre, J.L.Chaboche, Mécanique des matériaux solides (Mechanics of Solid Materials), Dunod, Paris, 1996.
- 9. A. Wereszczak, M. Ferber, T. Kirkland, A. Bames, E. Frome, M. Menon, Asymmetric tensile and compressive creep deformation of hot-isostatically pressed Y2O3-doped – Si3N4, Journal of the European Ceramic Society, 19, 227–237, 1999.
- 10. J.M. Thomas, J.F. Carlson, Errors in Deformation Measurements for Elevated Temperature Tension Tests, ASTM Bulletin, ASTM, 47–51, 1955.
- 11. G. Roebben, B. Bollen, A. Brebels, J. Van Humbeeck, O. Van der Biest, Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature, Review of Scientific Instruments, 68, 12, 4511–4515, 1997.
- 12. Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus, ASTM E111, West Conshohocken, PA: ASTM International, 2017.
- 13. D.C. Hopkins, T. Baltis, J.M. Pitaress, D.R. Hazelmyer, Extreme Thermal Transient Stress Analysis with Pre-Stress in a Metal Matrix Composite Power Package, Additional Conferences, Device Packaging HiTEC HiTEN & CICMT, January 2012, doi: 10.4071/HITEC-2012-THA25.
- 14. L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths and Co. Ltd., London, p. 806, 1976.
- 15. G.B. Kim, J.L. Rempe, D.K. Knudson, K.G. Condie, B.H. Sencer, In-situ creep testing capability for the advanced test reactor, Nuclear Technology, 179, 2012, doi: 10.13182/NT10-58.
- 16. High Temperature Characteristics of Stainless Steels, [in:] A Designer’s Book Series, 9004, Nickel Development Institute, 2007.
- 17. Z.L. Pan, N. Wang, Z. He, Measurement of elastic modulus in Zr alloys for CANDU applications, 11th International Conference on CANDU fuel, Niagara Falls, Ontario, CW-128700-CONF-001, October 17–20, 2010.
- 18. D.O. Northwood, I.M. London, L.E. Bähen, Elastic constants of zirconium alloys, Journal of Nuclear Materials, 55, 3, 299–310, 1975.
- 19. S. Terzi, Comportement à haute température du superalliage Udimet 720 élaboré par métallurgie des poudres et optimisé pour la tenue en fluage, (Behavior at high temperature of superalloy Udimet 720 produced by powder metallurgy and optimized for creep resistance), PhD Dissertation, Institut National Polytechnique de Toulouse, France, 2006.
- 20. K. Prasad, H. Krishnaswamy, J. Jain, Leveraging transient mechanical effects during stress relaxation for ductility improvement in aluminum AA 8011 alloy, Journal of Materials Processing Technology, 255, 1–7, 2018.
- 21. J. Yang, H. Jiang, Z. Yao, J. Dong, Limitations of calculating stress relaxation limit by function-fitting of Inconel 718 superalloy, Materials Letters, 221, 89–92, 2018.
- 22. C.M. Sellars, W.J. McG. Tegart, Hot Workability, International Metallurgical Reviews, 17, 1, 1–24, 1974.
- 23. F. Montheillet, Déformation à chaud des métaux: physique et mécanique (Hot deformation of metals: physics and mechanics), Ellipses, Paris, 2019.
- 24. H.J. Frost, M.F. Ashby, Deformation Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982.
- 25. M. Langille, Influence des constituants microstructuraux sur la formabilité des tôles en alliages d’aluminium, (Influence of the microstructural constituents on the formability of aluminum alloy sheet), PhD Dissertation, Communauté Université Grenoble Alpes, France, 2019.
- 26. M. Zenasni, Caractérisation expérimentale et modélisation du comportement du cuivre en grandes déformations : sensibilité à la vitesse (Experimental characterization and simulation of the behaviour of Copper at large strains : strain rate sensitivity), PhD Dissertation, Université de Metz, France, 1992.
- 27. C. Chovet-Sauvage, Evolution des microstructures et des textures en grande déformation à chaud d’un alliage Al-Mg-Si, (Evolution of microstructures and textures at large strains of a hot worked Al-Mg-Si alloy), PhD Dissertation, Ecole des Mines de Saint-Etienne, France, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afbb6ee3-1f8e-4292-aa2a-c1d30212e79b