PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of shallow groundwater quality under impact zones of livestock and poultry farms using self-organizing maps

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The shifting of livestock and poultry production systems from traditional small householder farms to semi-intensive and intensive farms has led to a gradual deterioration in the quality of shallow groundwater, which has attracted considerable attention from researchers. In this study, a combination of self-organizing map technology was used to identify the effects of livestock and poultry farms on shallow groundwater hydrochemistry. NO3–N content in the livestock and poultry farm water samples in summer and winter, as well as the NH4–N and NO2–N content in the water samples of livestock and poultry farm, respectively, in winter, were more vulnerable to external influences. Agricultural and industrial activities were important sources of Cl- and SO42- leaching in shallow groundwater in the study area. Silicate weathering is an important source of conventional ions in the shallow groundwater at these two sites. The water quality at livestock farms was mainly affected by farm activities and agricultural pollution in summer and winter, whereas that at poultry farms was mainly affected by industrial sources and natural sources.
Czasopismo
Rocznik
Strony
2465--2479
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, Anhui, China
  • National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou 234000, Anhui, China
autor
  • National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou 234000, Anhui, China
Bibliografia
  • 1. Bui XK, Marlim MS, Kang D (2021) Optimal design of district metered areas in a water distribution network using coupled self-organizing map and community structure algorithm. Water 13:836. https://doi.org/10.3390/w13060836
  • 2. Choi BY, Yun ST, Kim KH, Kim JW, Kim HM, Koh YK (2014) Hydrogeochemical interpretation of South Korean groundwater monitoring data using self-organizing maps. J Geochem Explor 137:73–84. https://doi.org/10.1016/j.gexplo.2013.12.001
  • 3. Cheng C, Liu JJ, Wang L (2021) Analysis of hydrochemical characteristics and water quality evaluation of Zhuxianzhuang Mining area. J Suzhou Univ 36(6):34–39
  • 4. Chen X, Jiang C, Zheng L, Zhang L, Fu L, Chen S, Chen Y, Hu J (2021) Evaluating the genesis and dominant processes of groundwater salinization by using hydrochemistry and multiple isotopes in a mining city. Environ Pollut 283:117381
  • 5. Cesoniene L, Dapkiene M, Sileikiene D (2019) The impact of livestock farming activity on the quality of surface water. Environ Sci Pollut Res 26:32678–32686. https://doi.org/10.1007/s11356-018-3694-3
  • 6. Fan B, Zhao Z, Tao F, Liu B, Tao Z, Gao S, Zhang L (2014) Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: a comparison among the upstream, midstream and downstream. J Asian Earth Sci 96:17–26
  • 7. Gu D, Feng Q, Guo C, Hou S, Lv J, Zhang Y, Yuan S, Zhao X (2019) Occurrence and risk assessment of antibiotics in manure, soil, wastewater, groundwater from livestock and poultry farms in Xuzhou China. Bull Environ Contam Toxicol 103:590–596. https://doi.org/10.1007/s00128-019-02692-0
  • 8. Guggenberger M, Oberlerchner JT, Grausgruber H, Rosenau T, Böhmdorfer S (2021) Self-organising maps for the exploration and classification of thin-layer chromatograms. Talanta 233:122460. https://doi.org/10.1016/j.talanta.2021.122460
  • 9. Guo Y, Gui HR, Wei J, Zhang Z, Hu M, Fang P, Li G, Gao C, Wang X (2020) Hydrogeochemistry of water in coal measures during grouting treatment of Taoyuan Mine, China. Groundwater
  • 10. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090
  • 11. Henderson GR, Barrett BS, South K (2016) Eurasian october snow water equivalent: using self-organizing maps to characterize variability and identify relationships to the MJO. Int J Climatol J R Meteorol Soc
  • 12. He S, Li P, Wu J, Elumalai V, Adimalla N (2019) Groundwater quality under land use/land cover changes: a temporal study from 2005 to 2015 in Xi’an, Northwest China. Hum Ecol Risk Assess Int J 26(10):2771–2797. https://doi.org/10.1080/10807039.2019.1684186
  • 13. Hakimi Y, Orban P, Deschamps P, Brouyere S (2021) Hydrochemical and isotopic characteristics of groundwater in the Continental intercalaire aquifer system: insights from Mzab Ridge and surrounding regions, North of the Algerian Sahara. J Hydrol: Reg Stud 34:100791. https://doi.org/10.1016/j.ejrh.2021.100791
  • 14. Jurado A, Borges AV, Pujades E, Hakoun V, Otten J, Knöller K, Brouyère S (2018) Occurrence of greenhouse gases in the aquifers of the Walloon Region (Belgium). Sci Total Environ 619–620:1579–1588. https://doi.org/10.1016/j.scitotenv.2017.10.144
  • 15. Kim SH, Kim HR, Yu S, Kang HJ, Hyun IH, Song YC, Kim H, Yun ST (2021) Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island, South Korea: with emphasis on legacy effects on water management. Water Res 191:116814. https://doi.org/10.1016/j.watres.2021.116814
  • 16. Kohonen T (1990) The self-organizing map. IEEE Proc ICNN. 1:1–6. https://doi.org/10.1016/S0925-2312(98)00030-7
  • 17. Khmila K, Trabelsi R, Zouari K, Kumar US (2021) Application of geochemical and isotopic tracers for the evaluation of groundwater quality in the irrigated area of the Sbiba plain (Central West Tunisia). Agric Ecosyst Environ 313:107298. https://doi.org/10.1016/j.agee.2021.107298
  • 18. Lei YY, Li FF, Ouyang J, Li MJ, Guo LH (2021) Environmental distribution characteristics and source analysis of antibiotics in Zhejiang area. Prog Chem 33(8):1414–1425
  • 19. Long X, Liu F, Zhou X, Pi J, Yin W, Li F, Huang S (2020) Estimation of spatial distribution and health risk by arsenic and heavy metals in shallow groundwater around Dongting Lake Plain using GIS mapping. Chemosphere 128698
  • 20. Li J, Shi Z, Wang G, Liu F (2020) Evaluating spatiotemporal variations of groundwater quality in Northeast Beijing by self-organizing map. Water 12(5):1382
  • 21. Lingle DA, Kehew AE, Krishnamurthy RV (2017) Use of nitrogen isotopes and other geochemical tools to evaluate the source of ammonium in a confined glacial drift aquifer, Ottawa County, Michigan, USA. Appl Geochem 78:334–342. https://doi.org/10.1016/j.apgeochem.2017.01.004
  • 22. Liu XH, Yu JC, Sun LH, Gui HR (2016) Hydrochemistry of groundwater from the loose layer aquifer: quality and controlling factor analysis. Fresenius Environ Bull 25(9):4387–4392
  • 23. Liu JT, Peng YM, Li CS, Gao ZJ, Chen SJ (2021) Characterization of the hydrochemistry of water resources of the Weibei plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health✩. Environ Pollut 268:115947
  • 24. Ma J, Chen S, Feng SB, Ding DD (2022) Hydrochemical characteristics, hydraulic connectivity and water quality assessment of multilayer aquifers in Western Suzhou City, Northern Anhui Province China. Water Supply 26(3):2644–2658
  • 25. Mao M, Wang X, Zhu X (2021) Hydrochemical characteristics and pollution source apportionment of the groundwater in the east foothill of the Taihang mountains Hebei Province. Environ Earth Sci 80(1):14
  • 26. Nakagawa K, Yu ZQ, Berndtsson R, Hosono T (2020) Temporal characteristics of groundwater chemistry affected by the 2016 Kumamoto earthquake using self-organizing maps. J Hydrol 582:124519. https://doi.org/10.1016/j.jhydrol.2019.124519
  • 27. Nafchi RF, Yaghoobi P, Vanani HR, Ostad-Ali-Askari K, Nouri J, Maghsoudlou B (2022) Correction to: eco-hydrologic stability zonation of dams and power plants using the combined models of SMCE and CEQUALW2. Appl Water Sci 12:55. https://doi.org/10.1007/s13201-021-01563-6
  • 28. Ostad-Ali-Askari K, Shayannejad M, Eslamian S (2017) Chapter no. 18: deficit irrigation: optimization models. management of drought and water scarcity. Handb Drought Water Scarcity 3:373–389. https://doi.org/10.1201/9781315226774
  • 29. Oyewale AT, Adesakin TA, Aduwo AI (2019) Environmental impact of heavy metals from poultry waste discharged into the Olosuru stream, Ikire, Southwestern Nigeria. J Health Pollut 9(22)
  • 30. Peng S, Zhang H, Song D, Chen H, Lin X, Wang Y (2022) Distribution of antibiotic, heavy metals and antibiotic resistance genes in livestock and poultry feces from different scale of farms in Ningxia China. J Hazard Mater 440:129719. https://doi.org/10.1016/j.jhazmat.2022.129719
  • 31. Pórcel RAD, Gómez HDL, Schueth C (2012) Urban impacts analysis on hydrochemical and hydrogeological evolution of groundwater in shallow aquifer Linares Mexico. Environ Earth Sci 66(7):1871–1880
  • 32. Pant N, Rai SP, Singh R, Kumar S, Saini RK, Purushothaman P, Nijesh P, Rawat YS, Sharma M, Pratap K (2021) Impact of geology and anthropogenic activities over the water quality with emphasis on fluoride in water scarce Lalitpur district of Bundelkhand region India. Chemosphere 279:130496
  • 33. Qiu HL, Gui HR (2019) Heavy metals contamination in shallow groundwater of a coal-mining district and a probabilistic assessment of its human health risk. Hum Ecol Risk Assess 25(3–4):548–563
  • 34. Qu S, Shi Z, Liang X, Wang G, Han J (2021) Multiple factors control groundwater chemistry and quality of multi-layer groundwater system in Northwest China coalfield—using self-organizing maps (SOM). J Geochem Explor 227:106795. https://doi.org/10.1016/j.gexplo.2021.106795
  • 35. Shayannejad M, Ghobadi M, Ostad-Ali-Askari K (2022) Modeling of surface flow and infiltration during surface irrigation advance based on numerical solution of saint–venant equations using Preissmann’s scheme. Pure Appl Geophys 179(3):1103–1113. https://doi.org/10.1007/s00024-022-02962-9
  • 36. Talebmorad H, Ostad-Ali-Askari K (2022) Hydro geo-sphere integrated hydrologic model in modeling of wide basins. Sustain Water Resour Manag 8:118. https://doi.org/10.1007/s40899-022-00689-y
  • 37. Tobiszewski M, Tsakovski S, Simeonov V, Namie´snik J, (2012) Chlorinated solvents in a petrochemical wastewater treatment plant: an assessment of their removal using self-organising maps. Chemosphere 87:962–968. https://doi.org/10.1016/j.chemosphere.2012.01.057
  • 38. Thoré ESJ, Schoeters F, De Cuyper A, Vleugels R, Noyens I, Bleyen P, Van Miert S (2021) Waste is the new wealth: resource recovery from poultry wastewater for microalgal biorefinery. Front Environ Sci 9:679917
  • 39. Wang H, Xu J, Liu X, Sheng L, Zhang D, Li L, Wang A (2018) Study on the pollution status and control measures for the livestock and poultry breeding industry in Northeastern China. Environ Sci Pollut Res 25:4435–4445. https://doi.org/10.1007/s11356-017-0751-2
  • 40. Wu S, Tang M, Wang Y, Ma Z, Ma Y (2022) Analysis of the spatial distribution characteristics of livestock and poultry farming pollution and assessment of the environmental pollution load in Anhui province. Sustainability 14:4165
  • 41. Wu C, Fang C, Wu X, Zhu G, Zhang Y (2021) Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area, Ordos Basin NW China. Geosci Front 12(2):781–790
  • 42. Wu C, Wu X, Qian C, Zhu G (2018) Hydrogeochemistry and groundwater quality assessment of high fluoride levels in the Yanchi endorheic region, Northwest China. Appl Geochem 98:404–417
  • 43. Wang J, Chen Q (2020) Suzhou makes full efforts to promote utilization of livestock and poultry waste resources China. Anim Ind 5:65–66
  • 44. WHO (World Health Organization) (2008) Guidelines for drinking-water quality incorporating first addendum to third edition. Recommendations Geneva 1:595
  • 45. Wu ML, Wang YS, Gu JD (2015) Assessment for water quality by artificial neural network in Daya Bay South China Sea. Ecotoxicology 24(7–8):1632–1642
  • 46. Yan J, Chen J, Zhang W (2021) Study on the groundwater quality and its influencing factor in Songyuan City, Northeast China, using integrated hydrogeochemical method. Sci Total Environ 773:144958. https://doi.org/10.1016/j.scitotenv.2020.144958
  • 47. Yang Y, Meng Z, Jiao W (2018) Hydrological and pollution processes in mining area of Fenhe river basin in China. Environ Pollut 234:743–750
  • 48. Yang QC, Li ZJ, Ma HY, Wang LC, Martín JD (2016) Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China. Environ Pollut 218:879–888
  • 49. Zhu G, Wu X, Ge J, Liu F, Zhao W, Wu C (2020) Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map (SOM). J Clean Prod 257:120664
  • 50. Zhang H, Bian J, Wan H (2021) Hydrochemical appraisal of groundwater quality and pollution source analysis of oil field area: a case study in Daqing city, China. Environ Sci Pollut Res 28:18667–18685
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afb9e962-3d49-4f73-bf8d-39b0feb059a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.