PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of impact load form on dynamic response of chock-shield support

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chock-shield support is usually used in undergroud coal mining to protect the roof. However, as the mining depth gets deeper, impact load that came from the roof becomes stronger and more frequent. This causes the support to bear a large number of dynamic loads, and reducing its reliability. To improve the support performance of the chock-shield support, the mixed-kinetic model was established using the mechanical-hydraulic co-simulation method. The load distribution law of the support joint under impact load form different stability forces, impact load amplitude, and impact frequency is discussed. The mechanical-hydraulic cooperative response of the chock-shield support are obtained. The results show that different joints show typical non-uniformity characteristic during the loading process. The proposed mechanical-hydraulic co-simulation method can more accurately obtain the dangerous points of hydraulic support reliability. The results of this study will help to improve the reliability of the chock-shield support.
Rocznik
Strony
art. no. 168316
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Shandong University of Science and Technology, China
autor
  • Shandong University of Science and Technology, China
autor
  • Shandong University of Science and Technology, China
Bibliografia
  • 1. Cao LM, Xu GT, Su GX, Cao HL. Design of automatic pressurizing device of hydraulic support initial force. Energy Science & Engineering 2020,8(8). doi:10.1002/ese3.705.
  • 2. Cao LM, Zhang F, Chen WY, Chen LJ. Design and Analysis on a Pressure Control Device to Setting Load for Hydraulic Support in Coal Face. The Open Mechanical Engineering Journal 2015,9(1). doi:10.2174/1874155x01509010124.
  • 3. Chen NN, Fang XQ, Liang MF, Xue XM, Zhang F, Wu G, Qiao FK. Research on Hydraulic Support Attitude Monitoring Method Merging FBG Sensing Technology and AdaBoost Algorithm. Sustainability 2023, 15(3). doi:10.3390/SU15032239.
  • 4. Duyun Tatyana, Duyun Ivan, Rybak Larisa, Perevuznik Victoria. Simulation of the structural and force parameters of a robotic platform using co-simulation. Procedia Computer Science 2022, 213. doi:10.1016/J.PROCS.2022.11.126.
  • 5. Guan EG, Miao HH, Li PB, Zhao YZ. Dynamic model analysis of hydraulic support. Advances in Mechanical Engineering 2019, 11(1). doi:10.1177/1687814018820143.
  • 6. He WB, Chen ZJ, Du JG, Yao HY. Finite Element Analysis of Combination Condition of ZF6400/19/32 Hydraulic Support. IOP Conference Series: Materials Science and Engineering 2019, 490(5). doi:10.1088/1757-899X/490/5/052006.
  • 7. Hu XP, Liu XH. Stability analysis of four-column hydraulic support. Journal of Vibration and Shock 2021, 40(19):1-11+25. https://doi.org/10.1155/2021/5547222.
  • 8. Jiao XB, Xie JC, Wang XW, Yan ZW, Hao ZX. Wang XS. Intelligent decision method for the position and attitude self-adjustment of hydraulic support groups driven by a digital twin system. Measurement 2022, 202. doi:10.1016/J.MEASUREMENT.2022.111722.
  • 9. Li JW, Fu BJ, Zhang HL, Zhao QC, Bu QW. Study on Fracture Behavior of Directly Covered Thick Hard Roof Based on Bearing Capacity of Supports. Applied Sciences 2023, 13(4):2546. doi:10.3390/APP13042546.
  • 10. Li TD, Wang JR, Zhang K, Zhang CH. Mechanical analysis of the structure of longwall mining hydraulic support. Science Progress 2020, 103(3). doi:10.1177/0036850420936479.
  • 11. Liang LC, Tian JJ, Zheng H, Jiao SJ. A study on force transmission in a hydraulic support under impact loading on its canopy beam. Journal of China Coal Society 2015, 40(11):2522-2527. doi:10.13225/j.cnki.jccs.2015.7021.
  • 12. Lin JZ, Yang TR, Ni KX, Han CY, Ma H, Gao A, Xiao CL. Effects of boundary conditions on stress distribution of hydraulic support: A simulation and experimental study. Advances in Mechanical Engineering 2021, 13(3). doi:10.1177/16878140211001194.
  • 13. Nagarajan P, Vigneshwaran S, Yuvaraj K, Mohammed Ismail A, Raghavendra Prabhu S. Modelling of Robotic Single Peg-In-Hole Assembly Using ADAMS/MATLAB Co-simulation. IOP Conference Series: Materials Science and Engineering 2020, 995(1). doi:10.1088/1757-899X/995/1/012008.
  • 14. Pan YS, Qi QX, Wang AW, Xiao YH, Chen JQ, Lu XF, et al. Theory and technology of three levels support in bump-prone road way. Journal of China Coal Society 2020, 45(5). doi:10.13225/j.cnki.jccs.DY20.0261.
  • 15. Pan YS, Song YM, Zhu CL, Ren H, Xv HL. Localization method of coal rock deformation for rock burst prediction. Journal of China Coal Society 2023,48(1). doi:10.13225/j.cnki.jccs.2022.1375.
  • 16. Pang YH, Wang HB, Lou JF, Chai HL. Longwall face roof disaster prediction algorithm based on data model driving. International Journal of Coal Science & Technology 2009, (1). doi:10.1007/S40789-022-00474-4.
  • 17. Ren HW, Zhang DS, Gong SX, Zhou K, Xi CY, He M, Li TJ. Dynamic impact experiment and response characteristics analysis for 1:2 reduced-scale model of hydraulic support. International Journal of Mining Science and Technology 2021,31(3). doi:10.1016/J.IJMST.2021.03.004.
  • 18. Wan LR, Jiang K, Zeng QL, Gao KD. Dynamic response and reliability analysis of shearer drum cutting performance in coal mining process. Eksploatacja i niezawodność - maintenance and reliability 2022,24(1). doi:10.17531/EIN.2022.1.14.
  • 19. Wang DL, Zeng XT, Wang GF, Li R. Adaptability Analysis of Four-Column Hydraulic Support with Large Mining Height under Impact Dynamic Load. Shock and Vibration 2022, 2022. doi:10.1155/2022/2168871.
  • 20. Wang XW, Gui T, Xie JC, Shen HD, Liu Ym, W BB. Virtual simulation method of hydraulic support motion considering pin shaft clearance. Coal Science and Technology 2021,49( 2) : 186-193. doi: 10. 13199/j. cnki. cst. 2021. 02. 022
  • 21. Wo XF, Li GC, Li JH, Yang S, Lu ZC, Hao HR, Sun YT. The Roof Safety under Large Mining Height Working Face: A Numerical and Theoretical Study. Minerals 2022, 12(10). doi:10.3390/MIN12101217.
  • 22. Yang XJ, Wang RF, Wang HF, Yang YK. A novel method for measuring pose of hydraulic supports relative to inspection robot using LiDAR. Measurement 2020, 154(C). doi:10.1016/j.measurement.2019.107452.
  • 23. Yang YL, Wang JR, Shi LW, Li J. Gait Simulation Research of 2-DOF Lower Limb Rehabilitation Robot Based on ADAMS and MATLAB. Journal of Physics: Conference Series 2022, 2414(1). doi:10.1088/1742-6596/2414/1/012020.
  • 24. Yang Z K, Sun ZY, Jiang SB, Xu CZ. Structural Analysis on Impact-Mechanical Properties of Ultra-High Hydraulic Support. International Journal of Simulation Modeling 2020,19(1). doi:10.2507/IJSIMM19-1-498.
  • 25. Zeng QL, Li ZJ, Wan LR, Ma DJ, Wang JT. Research on Dynamic Characteristics of Canopy and Column of Hydraulic Support under Impact Load. Energies 2022, 15(13). doi:10.3390/EN15134638.
  • 26. [26] Zeng QL, Xu PH, Meng ZS, Ma C, Lei XW. Posture and Dynamics Analysis of Hydraulic Support with Joint Clearance under Impact Load. Machines 2023, 11(2). doi:10.3390/MACHINES11020159.
  • 27. Zhang K, Li YX, Feng L, Meng XJ, Zhong DH, Huang LS. Roof deformation characteristics and experimental verification of advanced coupling support system supporting roadway. Energy Science & Engineering 2022, 10(7). doi:10.1002/ESE3.1145.
  • 28. Zhang XW, Liang HB, Wang XH, Li Q. Integrated Direct Yaw Control and Antislip Regulation Mixed Control of Distributed Drive Electric Vehicle Using Cosimulation Methodology. Mathematical Problems in Engineering 2022, 2022. doi:10.1155/2022/6749649
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afb2bdb3-7731-453e-9e53-2ce55e7e08c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.