Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is necessary to exploit an easy and effective way to obtain flotation collector. In this paper, oleic acid was modified by oxidation reaction to obtain an excellent collector. The flotation performances of oleic acid and its oxidation products were systematically investigated and a novel collector ((E)-8,11-dihydroperoxyoctadec-9-enoic acid, EDEA) was obtained. Single mineral flotation tests results showed that EDEA had strong flotation power towards quartz at pH>11 and hardly floated hematite and magnetite at pH=8~13. The recovery of quartz could achieve 92.35% with 120 mg/L EDEA under the condition of pH=12 and dosage of CaCl2 60mg/L while the recovery was 62.44% with 120 mg/L oleic acid. Bench scale flotation tests results showed that EDEA had a preferable effect on separating quartz from iron ore especially at low flotation temperature (288K). The mechanism research revealed that EDEA attracted on quartz surface through electrostatic attraction and the neighboring EDEA molecules could form intermolecular hydrogen bonds which resulted in a closer alignment of EDEA on quartz surface.
Słowa kluczowe
Rocznik
Tom
Strony
136--155
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
autor
- Wuhan University of Technology
autor
- Wuhan University of Technology
- Hubei Key Laboratory of Mineral Resources Processing & Environment
autor
- Wuhan University of Technology
autor
- Chonfar Engineering and Technology Co., Ltd., Changsha 410016, China
autor
- Wuhan University of Technology
- Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China
Bibliografia
- DE OLIVEIRA, P., MANSUR, H., MANUSR, A., DA SILVA, G., CLARK, A.E.C., 2019. Apatite flotation using pataua palm tree oil as collector. J. Mater. Res. Technol. 8, 4612–4619.
- DESTA, M., MOLLA, A., YUSUF, Z., 2020. Characterization of physico-chemical properties and antioxidant activity of oil from seed, leaf and stem of purslane (Portulaca oleracea L.). Biotechnol. Reports 27, e00512.
- FENG, Q.M., FENG, B., LU, Y.P., 2013. Influence of copper ions and calcium ions on adsorption of CMC on chlorite. Trans. Nonferrous Met. Soc. China 23, 237–242.
- FILIPPOV, L.O., SEVEROV, V. V, FILIPPOVA, I. V, 2014. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process. 127, 62–69.
- FLETCHER, B., CHIMONYO, W., PENG, Y., 2020. A comparison of native starch, oxidized starch and CMC as copperactivated pyrite depressants. Miner. Eng. 156, 106532.
- FOCA, G., FERRARI, C., ULRICI, A., IELO, M.C., MINELLI, G., LO FIEGO, D.P., 2016. Iodine Value and Fatty Acids Determination on Pig Fat Samples by FT-NIR Spectroscopy: Benefits of Variable Selection in the Perspective of Industrial Applications. Food Anal. Methods 9, 2791–2806.
- FUERSTENAU, D.W., PRADIP, 2005. Zeta potentials in the flotation of oxide and silicate minerals. Adv. Colloid Interface Sci. 114–115, 9–26.
- GONG, G., WU, S., WU, X., 2019. Effects of storage time and temperature on toxic aldehydes and polycyclic aromatic hydrocarbons in flavouring oil gravy during storage. Lwt 116, 108510.
- GUO, W., HAN, Y., ZHU, Y., LI, Y., TANG, Z., 2020a. Effect of amide group on the flotation performance of lauric acid. Appl. Surf. Sci. 505, N.PAG-N.PAG.
- GUO, W., ZHU, Y., HAN, Y., LI, Y., YUAN, S., 2020b. Flotation performance and adsorption mechanism of a new collector 2-(carbamoylamino) lauric acid on quartz surface. Miner. Eng. 153, 106343.
- HAN, Y.X., GUO, W.D., ZHU, Y.M., WEI, Y.H., GU, X.T., 2018. Flotation behavior and separation mechanism of quartz and iron minerals in alpha-bromolauric acid reverse flotation system. Physicochem. Probl. Miner. Process. 54, 992–1003.
- HILP, M., 2002. Determination of iodine values according to Hanuš using 1,3-dibromo-5,5-dimethylhydantoin (DBH): Analytical methods of pharmacopeias with DBH: Part 7. J. Pharm. Biomed. Anal. 28, 81–86.
- HUANG, Z.G., ZHONG, H., WANG, S., XIA, L.Y., ZOU, W.B., LIU, G.Y., 2014. Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1,2-bis(dimethyl-dodecyl-ammonium bromide). Chem. Eng. J. 257, 218–228.
- IMMING, P., GERMERSHAUS, O., 2002. Products of the determination of the iodine value with iodine monobromide. Arch. Pharm. (Weinheim). 335, 449–451.
- JOHNSON, R., DANIELS, R., 2000. Carboxylic Acids, Manufacture. John Wiley & Sons, New York.
- KIRPLUKS, M., VANAGS, E., ABOLINS, A., FRIDRIHSONE, A., CABULIS, U., 2019. Chemo-enzymatic oxidation of tall oil fatty acids as a precursor for further polyol production. J. Clean. Prod. 215, 390–398.
- KOU, J., XU, S., SUN, T., SUN, C., GUO, Y., WANG, C., 2016. A study of sodium oleate adsorption on Ca2+ activated quartz surface using quartz crystal microbalance with dissipation. Int. J. Miner. Process. 154, 24–34.
- KYRIAKIDIS, N.B., KATSILOULIS, T., 2000. Calculation of iodine value from measurements of fatty acid methyl esters of some oils: Comparison with the relevant American Oil Chemists Society method. J. Am. Oil Chem. Soc. 77, 1235–1238.
- LI, D., YIN, W.Z., XUE, J.W., YAO, J., FU, Y.F., LIU, Q., 2017. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate. Int. J. Miner. Metall. Mater. 24, 736–744.
- LI, H.C., DE BRUYN, P.L., 1966. Electrokinetic and adsorption studies on quartz. Surf. Sci. 5, 203–220.
- LIN, X., LU, P., CHEN, R., CHEN, J., MA, X., LIN, B., 1993. Preparation and application of a new type of efficient collector RA-315. Min. Metall. Eng. 13, 31–35.
- LIU, C., ZHU, G., SONG, S., LI, H., 2019. Flotation separation of smithsonite from quartz using calcium lignosulphonate as a depressant and sodium oleate as a collector. Miner. Eng. 131, 385–391.
- LUO, B.B., ZHU, Y.M., SUN, C.Y., LI, Y.J., HAN, Y.X., 2018. The flotation behavior and adsorption mechanisms of 2-((2-(decyloxy)ethyl) amino)lauric acid on quartz surface. Miner. Eng. 117, 121–126.
- LUO, B.B., ZHU, Y.M., SUN, C.Y., LI, Y.J., HAN, Y.X., 2015. Flotation and adsorption of a new collector alphaBromodecanoic acid on quartz surface. Miner. Eng. 77, 86–92.
- MA, X., MARQUES, M., GONTIJO, C., 2011. Comparative studies of reverse cationic/anionic flotation of Vale iron ore. Int. J. Miner. Process. 100, 179–183.
- MEI, J., HE, R., YANG, W., 2009. Design, synthesis and application of KS-II flotation reagents for iron ores. Min. Eng. 7, 26–28.
- MUNIYAPPAN, V.K., TAMILMANI, E., DESIKAN, R., RANGAGATHAN, U., 2019. Influence of groundnut seed viability on biodiesel feedstock quality. Ind. Crops Prod. 140.
- NAKHAEI, F., IRANNAJAD, M., 2018. Reagents types in flotation of iron oxide minerals: A review. Miner. Process. Extr. Metall. Rev. 39, 89–124.
- NAN, N., ZHU, Y., HAN, Y., 2019. Flotation performance and mechanism of α-Bromolauric acid on separation of hematite and fluorapatite. Miner. Eng. 132, 162–168.
- OGATA, Y., SUGIMOTO, T., INAISHI, M., 1979. α-Chlorination of Long-chain Aliphatic Acids. Bull. Chem. Soc. Japan 52, 255–256.
- OZKAN, A., UCBEYIAY, H., DUZYOL, S., 2009. Comparison of stages in oil agglomeration process of quartz with sodium oleate in the presence of Ca(II) and Mg(II) ions. J. Colloid Interface Sci. 329, 81–88.
- POULENAT, G., SENTENAC, S., MOULOUNGUI, Z., 2003. Fourier-Transform Infrared Spectra of Fatty Acid Salts -Kinetics of High-Oleic Sunflower Oil Saponification. J. Surfactants Deterg. 6, 305–310.
- QUAST, K., 2006. Flotation of hematite using C6-C18 saturated fatty acids. Miner. Eng. 19, 582–597.
- SAHOO, H., RATH, S.S., DAS, B., MISHRA, B.K., 2016. Flotation of quartz using ionic liquid collectors with different functional groups and varying chain lengths. Miner. Eng. 95, 107–112.
- SAHOO, H., RATH, S.S., JENA, S.K., MISHRA, B.K., DAS, B., 2015. Aliquat-336 as a novel collector for quartz flotation. Adv. Powder Technol. 26, 511–518.
- SHI, Q., ZHANG, G.F., FENG, Q.M., DENG, H., 2013. Effect of solution chemistry on the flotation system of smithsonite and calcite. Int. J. Miner. Process. 119, 34–39.
- SIS, H., CHANDER, S., 2003. Reagents used in the flotation of phosphate ores: a critical review. Miner. Eng. 16, 577–585.
- SOARES, S., ROCHA, F.R.P., 2018. Fast Spectrophotometric Determination of Iodine Value in Biodiesel and Vegetable Oils. J. Braz. Chem. Soc. 29, 1701–1706.
- SONG, R., 2010. Research on LKD New-type Anionic Reverse Flotation Collector. Met. Mine 3, 57–61.
- UWADIALE, G.G.O.O., 1992. Flotation of Iron Oxides and Quartz—A Review. Miner. Process. Extr. Metall. Rev. 11, 129–161.
- VIELRA, A.M., PERES, A.E.C., 2007. The effect of amine type, pH, and size range in the flotation of quartz. Miner. Eng. 20, 1008–1013.
- WANG, L., SUN, W., HU, Y.H., XU, L.H., 2014. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite- Quartz flotation system. Miner. Eng. 64, 44–50.
- YU, X., WANG, L., LIU, C., HU, L., WEI, X., HUANG, Z., HE, G., 2018. Utilization of benzyl aminopropyl dimethoxymethylsilane as collector for the reverse flotation of silicate minerals from magnetite. Miner. Eng. 129, 106–111.
- ZHANG, Z., LIU, G., 2003. Study on lab test and commercial test of anion collector LKY. China Min. Mag. 12, 43–44.
- ZHAO, X., MENG, Q., YUAN, Z., ZHANG, Y., LI, L., 2019. Effect of sodium silicate on the magnetic separation of ilmenite from titanaugite by magnetite selective coating. Powder Technol. 344, 233–241.
- ZHOU, D., ZHI, Q., PAN, J., LIU, M., LONG, Y., GE, F., 2019. Effectively improve the quality of camellia oil by the combination of supercritical fluid extraction and molecular distillation (SFE-MD). Lwt 110, 175–181.
- ZHU, T.W., ZHANG, X., ZONG, M.H., LINHARDT, R.J., WU, H., LI, B., 2020. Storage stability studies on interesterified blend-based fast-frozen special fats for oxidative stability, crystallization characteristics and physical properties. Food Chem 306, 125563.
- ZHU, Y., JIANLEI, R., ZHAO, N., LI, Y., 2012. Reverse flotation of the mixed magnetic concentrate of Qidashan dressing plant in Anshan by a novel anion collector DZN-1. China Min. Mag. 74–77.
- ZHU, Y., LUO, B., SUN, C., LI, Y., HAN, Y., 2015. Influence of bromine modification on collecting property of lauric acid. Miner. Eng. 79, 24–30.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afb111d9-1340-43f1-aaae-43418af4a5ed