PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of geophysical surveys in the identification of water escape zones from retention lakes: a case study on a selected object in Upper Silesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main scientific goal of this work is the presentation of the role of selected geophysical methods (Ground-Penetrating Radar GPR and Electrical Resistivity Tomography ERT) to identify water escape zones from retention reservoirs. The paper proposes a methodology of geophysical investigations for the identification of water escape zones from a retention fresh water lake (low mineralised water). The study was performed in a lake reservoir in Upper Silesia. Since a number of years the administrators of the lake have observed a decreasing water level, a phenomenon that is not related to the exploitation of the object. The analysed retention lake has a maximal depth between 6 and 10 m, depending on the season. It is located on Triassic carbonate rocks of the Muschelkalk facies. Geophysical surveys included measurements on the water surface using ground penetration radar (GPR) and electrical resistivity tomography (ERT) methods. The measurements were performed from watercrafts made of non-metal materials. The prospection reached a depth of about 1 to 5 m below the reservoir bottom. Due to large difficulties of conducting investigations in the lake, a fragment with an area of about 5,300 m2, where service activities and sealing works were already commenced, was selected for the geophysical survey. The scope of this work was: (1) field geophysical research (Ground-Penetrating Radar GPR and Electrical Resistivity Tomography ERT with geodesic service), (2) processing of the obtained geophysical research results, (3) modelling of GPR and ERT anomalies on a fractured water reservoir bottom, and (4) interpretation of the obtained results based on the modelled geophysical anomalies. The geophysical surveys allowed for distinguishing a zone with anomalous physical parameters in the area of the analysed part of the retention lake. ERT surveys have shown that the water escape zone from the reservoir was characterised by significantly decreased electrical resistivities. Diffraction hyperboles and a zone of wave attenuation were observed on the GPR images in the lake bottom within the water escape zone indicating cracks in the bottom of the water reservoir. The proposed methodology of geophysical surveys seems effective in solving untypical issues such as measurements on the water surface.
Czasopismo
Rocznik
Strony
121--129
Opis fizyczny
Bibliogr. 33 poz., tab., rys.
Twórcy
  • University of Warsaw, Faculty of Geology, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
autor
  • University of Warsaw, Faculty of Geology, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
  • PBG Geophysical Exploration Ltd., ul. Jagiellońska 76, 03-301 Warsaw
autor
  • Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, ul. Nowowiejska 20, 00-653 Warsaw
Bibliografia
  • 1. Amiri, V., Nakhaei, M., Lak, R., Kholghi, M., 2016. Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran. Environmental Science and Pollution Research, 23, 16738– 16760.
  • 2. Baumgart-Kotarba, M., Kotarba, A., Dec, J., Ślusarczyk, R., 2003. Geomorphological research in the Tatra Mts. in the light of geophysical prospecting. Geomorfologiczne poznanie Tatr w świetle badań geofizycznych. Przegląd Geograficzny 75 (4), 509–523.
  • 3. Bestyński, Z., Sieinski, E., Pacanowski, G., 2015. Geophysical investigations in assessment of the technical condition concrete dams. In: Winter, J., Wita, A. (Eds) Monografia Instytutu Meteorologii i Gospodarki Wodnej Państwowego Instytutu Badawczego „Eksploatacja budowli piętrzących – diagnostyka i zapobieganie zagrożeniom”. Warszawa, IMGW-PIB (in Polish with English summary).
  • 4. Bestyński, Z., Trojan, J., 1975. Geophysical methods in the study of the stability of rocky slopes. “Research and forecasting of landslides on slopes of water reservoirs in the Carpathian flysch”. Metody geofizyczne w badaniu stateczności zboczy skalnych. „Badanie i prognozowanie osuwisk na zboczach zbiorników wodnych we fliszu karpackim”. Seria Spec. 4, Wyd. IMGW, Warszawa: 155–170.
  • 5. Bugajski, A., Dec, J., Ślusarczyk, R., 1994. Investigation of earth and concrete dams body by means of computer assisted tomography. Badanie korpusu zapór ziemnych i betonowych metodą tomografii sejsmicznej. Czasopismo Techniczne; ISSN 0011-4561, Politechnika Krakowska. Seria: Budownictwo, 118–127.
  • 6. Charlet, F., Fagel, N., De Batist, M., Hauregard, F., Minnebo, B., Meischner, D., SONIC TEAM, 2005. Sedimentary dynamics on isolated highs in Lake Baikal: evidence from detailed high-resolution geophysical data and sediment cores. Global and Planetary Change 46, 125–144.
  • 7. Chich-Hou Yang, A.L., 2002. Delineating Lake Bottom Structure by Resistivity Image Profiling on Water Surface, Terrestrial, Atmospheric and Oceanic Sciences 13 (1), 39–52.
  • 8. Conyers, L.B., Goodmen, D., 1997. Ground-Penetrating Radar: An Introduction for Archeaologists. Walnut Creek, CA: AltaMira Press.
  • 9. Conyers, L.B., 2013. Ground-Penetrating Radar for Archaeology, 3.ed., Published by AltaMira Press.
  • 10. Dahlin, T., Zhou, B., 2006. Multiple-gradient array measurements for multichannel 2D resistivity imaging, Near Surface Geophysics 4 (2), 113–123.
  • 11. Edwards, L.S., 1977. A modified pseudosection for resistivity and IP. Geophysics 42, 1020–1036.
  • 12. Filina, I.Y., Blankenship, D.D., Lopamudra, R., Mrinal, K.S., Richter, T.G, Holt, J.W., 2006. Inversion of Airborne Gravity Data Acquired over Subglacial Lakes in East Antarctica, „Antarctica, Contributions to Global Earth Science” Springer, Berlin, pp. 129–133.
  • 13. Gruszczyk, H., Paulo, A., 1976. Transitional zone in the carbonate Triassic of the Olkusz area. Kwartalnik Geologiczny 20 (4), 737–749 (in Polish with English summary).
  • 14. Jol, H.M. (Ed.), 2009. Ground Penetrating Radar: Theory and Application, 1st ed., Elsevier.
  • 15. Karczewski, J., Ortyl, Ł., Mazurkiewicz, E., 2017. Evaluation of the influence of selected parameters of GPR profiling in the study of bedrock for construction needs on the example of the Zakrzówek horst. Przegląd Geologiczny 65, 796–802 (in Polish with English summary).
  • 16. Karczewski, J., Ortyl, Ł., Pasternak, M., 2012. Zarys metody georadarowej, wydanie drugie poprawione i rozszerzone, Wydawnictwo AGH, Kraków.
  • 17. Karczewski, J., Ziętek, J., 2009. GPR investigation of shallow water reservoirs. Geologia 35 (2/1), 437–443 (in Polish with English summary).
  • 18. Kotlicki, S., 1967. Objaśnienia do Szczegółowej Mapy Geologicznej Polski. Arkusz Zawiercie. 1:50 000. Wydawnictwa Geologiczne. Warszawa.
  • 19. Kowalczyk, S., Cabalski, K., Radzikowski, M., 2017. Application of geophysical methods in the evaluation of anthropogenic transformation of the ground: A Case study of the Warsaw environs, Poland. Engineering Geology 216, 42–55.
  • 20. Kowalczyk, S., Zawrzykraj, P., Mieszkowski, R., 2015. Application of electrical resistivity tomography in assessing complex soil conditions. Geological Quarterly 59 (2), 367–372.
  • 21. Loke, M.H., Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting 44, 131–152.
  • 22. Loke, M.H., 2000. Electrical imaging surveys for environmental and engineering studies. Wyd. Abem, Stokholm.
  • 23. Loke, M.H., 2013. Tutorial : 2-D and 3-D electrical imaging surveys. Mieszkowski, R., Wójcik, E., Żmudzin, D., Szwarc, A., Sosnowska, A., Popielski, P., 2017. Application of GPR method for identifying riverbed erosion zones on the example of selected section of the Vistula valley in Warsaw, Przegląd Geologiczny 65 (10/2), 785–789 (in Polish with English summary).
  • 24. Mościcki, W.J., Antoniuk, J., 1998. The method of electrical resistivity tomography . The examples of investigations for engineering-geology aims. Materials of the 5. Scientifically-technical Conference: geophysics in geology, the mining and the protection of the environment (in Polish). Krakow, Poland, 315–325.
  • 25. Neal, A., 2004. Ground-Penetrating Radar and its Use in Sedimentology: Principles, Problems and Progress. Earth-Science Review 66 (3), 261–330.
  • 26. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., Richard, G., 2005. Electrical resistivity survey in soil science: a review, Elsevier, Soil & Tillage Research 83, 173–193.
  • 27. Stenzel, P., Szymanko, J., 1973. Geophysical methods in hydrogeological and geological-engineering studies. Metody geofizyczne w badaniach hydrogeologicznych i geologiczno-inżynierskich, Wydawnictwa Geologiczne, Warszawa.
  • 28. Ślusarczyk, R., 1992. Research of earth and concrete dams by surface and hole seismic methods. Badanie zapór ziemnych i betonowych metodami sejsmiki powierzchniowej i otworowej. Zeszyty Naukowe AGH, Geofizyka Stosowana 12, 29–47.
  • 29. Ślusarczyk, R., 2001. Possibilities of applying engineering geophysics in the problems of civil and water construction. Możliwości zastosowania geofizyki inżynierskiej w problematyce budownictwa lądowego i wodnego. Mat. Konf. Geofizyka w inżynierii i ochronie środowiska, 109–124.
  • 30. Toran, L., Nyquist, J., Rosenberry, D., Gagliano, M., Mitchell, N., Mikochik, J., 2015. Geophysical and Hydrologic Studies of Lake Seepage Variability. Groundwater 53 (6), 841–850.
  • 31. Wilk, Z., Motyka, J., Borczak, S., Makowski, Z., 1985. Microhydraulic properties of the Muschelkalk and Rhoethian rocks of the southern section of the Cracow-Silesian Monocline (Poland),
  • 32. Rocznik Polskiego Towarzystwa Geologicznego. Annales Societaties Poloniae 55 (3–4), 485–508 (in Polish with English summary).
  • 33. Zhdanov, M.S., Keller, G.V., 1994. The geoelectrical methods in geophysical exploration. Elsevier, Amsterdam.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afad2194-1b8f-467c-a059-3c479c28f4fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.