Identyfikatory
Warianty tytułu
Dwuwymiarowe odkształcenia skręconych warstw nematyków fleksoelektrycznych
Języki publikacji
Abstrakty
Electric field induced deformations occurring in twisted nematic cells filled with liquid crystalline material possessing flexoelectric properties were simulated numerically. The aim of computations was to compare the two-dimensional periodic deformations with one-dimensional distortions reported in our earlier paper occurring in the same cells. It was found that the periodically deformed structures have lower free energy counted per unit area of the layer than the one-dimensional deformations.
Przeprowadzono symulacje wywołanych polem elektrycznym odkształceń występujących w skręconych warstwach nematyków posiadających właściwości fleksoelektryczne. Ich celem było porównanie deformacji dwuwymiarowych z deformacjami jednowymiarowymi tych samych warstw, opisanymi we wcześniejszym artykule. Stwierdzono, że struktury przestrzennie okresowe mają niższą energię niż deformacje jednowymiarowe.
Rocznik
Tom
Strony
21--30
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
- Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
autor
- Institute of Physics, Lodz University of Technology, Wólczańska 219, 90-924 Łódź, Poland
Bibliografia
- [1] Blinov L.M., Chigrinov V.G. 1996. Electrooptical Effects in Liquid Crystal Materials. New York: Springer.
- [2] Yang D.-K., Wu S.-T. 2006. Fundamentals of liquid crystal devices. John Wiley & Sons Ltd.
- [3] Meyer R.B. 1969. Piezoelectric effects in liquid crystals. Phys Rev Lett. 22: 918-921.
- [4] Buka A., Eber N. editors, 2012. Flexoelectricity in Liquid Crystals. Theory, Experiments and Applications. London: Imperial College Press.
- [5] Harden J., Mbanga B., Eber N., Fodor-Csorba K., Sprunt S., Gleeson J.T., Jakli A. 2006. Giant flexoelectricity of bent-core nematic liquid crystals. Phys. Rev. Lett. 97: 157802.
- [6] Jákli A. 2013. Liquid crystals of the twenty-first century – nematic phase of bentcore molecules. Liq Cryst Rev. 1:65-82.
- [7] Derfel G., Buczkowska M. 2015. Electric field induced deformations of twisted flexoelectric nematic layers. Liq. Cryst. 42: 1213-1220.
- [8] Vistin L.K. 1970. Electrostructural effect and optical properties of a certain class of liquid crystals. Sov. Phys. Crystallogr. 15: 514-515.
- [9] Barnik M.I., Blinov L.M., Trufanov A.N., Umanski B.A. 1977. Flexoelectric domains in nematic liquid crystals. Sov. Phys. JETP 45: 195-198.
- [10] Umanskil B.A., Chigrinov V.G., Blinov L.M., Podyachev Yu.B. 1981. Flexoelectric effect in twisted liquid-crystal structures. Sov. Phys. JETP 54: 694-699.
- [11] Petrov A.G., Ionescu A.Th., Versace C., Scaramuzza N. 1995. Investigation of flexoelectric properties of a palladium-containing nematic liquid crystal, Azpac, and its mixtures with MBBA. Liq. Cryst. 19: 169-178.
- [12] Marinova Y., Hinov H.P., Petrova A.G. 2005. Longitudinal flexoelectric domains in BMAOB nematic layers under the joint action of dc and ac voltages. J. Optoelectronics and Adv. Mater. 7: 277-280.
- [13] Lonberg F., Meyer R.B. 1985. New ground state for the Splay-Fréedericksz transition in a polymer nematic liquid crystal. Phys. Rev. Lett. 55: 718-721.
- [14] Srajer G., Fraden S., Meyer R.B. 1989. Field-induced nonequilibrium periodic structures in nematic liquid crystals: Nonlinear study of the twist Frederiks transition. Phys. Rev. A 39: 4828-4834.
- [15] Frisken B.J., Palffy-Muhoray P. 1989. Effect of a transverse electric field in nematics: induced biaxiality and the bend Freedericksz transition. Liq. Cryst. 5: 623-631.
- [16] Lavrentovich O.D. Pergamenshchik V.M. 1990. Periodic domain structures in thin hybrid nematic layers. Mol. Cryst. Liq. Cryst. 179: 125-132.
- [17] Scheffer T., Nehring J. 1997. Supertwisted nematic (STN) liquid crystal displays. Annu. Rev. Mater. Sci. 27: 555-583.
- [18] Hinov H.P., Bivas I., Mitov M.D., Shoumarov K., Marinov Y. 2003. A further experimental study of parallel surface-induced flexoelectric domains (PSIFED) (flexo-dielectric walls). Liq. Cryst. 30: 1293-1317.
- [19] Bobylev Y.P., Chigrinov V.G., Pikin S.A. 1979. Threshold flexoelectric effect in nematic liquid crystal. J. Phys. Colloques. 40: C3-331-C3-333.
- [20] Schiller P., Pelzl G., Demus D. 1990. Analytical theory for flexo-electric domains in nematic layer. Cryst. Res. Technol. 25: 111-116.
- [21] Barbero G., Miraldi E., Oldano C. 1988. Critical values of the elastic-constant ratio for the periodic twist-splay distortion in nematic liquid crystals. Phys. Rev. A 38: 519-521.
- [22] Derfel G. 1992. Stability of the periodic deformations in planar nematic layers. Liq. Cryst. 11: 431-438.
- [23] Krzyżański D., Derfel G. 2000. Magnetic-field-induced periodic deformations in planar nematic layers. Phys Rev E 61: 6663-6668.
- [24] Krzyżański D., Derfel G. 2001. Structure of spontaneous periodic deformations in hybrid aligned nematic layers. Phys. Rev. E 63: 021702-1 - 021702-9.
- [25] Krzyżański D., Derfel G. 2002. Periodic deformations induced by a magnetic field in planar twisted nematic layers. Liq. Cryst. 29: 951-959.
- [26] Derfel G., Krzyżański D. 2004. Influence of the surface tilt angle on the spatially periodic distortions in super-twisted nematic displays. J. appl. phys. 95: 3535-3540.
- [27] Derfel G., Buczkowska M. 2011. Numerical study of flexoelectric longitudinal domains. Mol. Cryst. Liq. Cryst. 547: 213-221.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afac1a48-8d92-49cf-afc2-bdbd8cc82ce6