PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowania obliczeniowej mechaniki płynów (CFD) w inżynierii chemicznej i procesowej

Autorzy
Identyfikatory
Warianty tytułu
EN
Applicartions of Computational Fluid Mechanics (CFD) in chemical and process engineering
Języki publikacji
PL
Abstrakty
PL
Przedstawiono możliwości wykorzystania oprogramowania obliczeniowej mechaniki płynów (CFD) do symulacji przebiegu procesów znajdujących się w obszarze zainteresowania inżynierii chemicznej i procesowej. Rozważono układy z przepływem laminarnym i burzliwym, jedno i wielofazowe; przedyskutowano też sposoby opisu przebiegu reakcji chemicznych i precypitacji, oraz możliwości przewidywania jakości produktów symulowanych procesów. Omówiono uproszczenia stosowane w poszczególnych modelach i związane z tym ograniczenia stosowalności i dokładności modeli.
EN
The paper summarises the present abilities of the models of Computational Fluid Dynamics (CFD) to simulate the processes from the area of interest of chemical and process engineering. Laminar and turbulent flow processes carried out in the single- and multiphase systems are considered. Methods applied to model the course of chemical reactions and precipitation precresses are presented and discussed as well with particular emphasis on prediction of the product quality. Effects of simplifications applied in the CFD models on their accuracy and limitations in their applications are discussed.
Rocznik
Strony
3--14
Opis fizyczny
Bibliogr. 59 poz.
Twórcy
autor
  • Politechnika Warszawska. Wydział Inżynierii Chemicznej i Procesowej, ul. Waryńskiego 1. 00-645 Warszawa
Bibliografia
  • [1] BALDYGAJ., BOURNE J. R., Turbulent Mixing and Chemical Reactions .Chichester, Wiley, 1999.
  • [2] Ll T. J., MANAS-ZLOCZOWER I., Flow field analysis of an intermeshing counterrotating twin screw extruder. Polym. Eng. Sei., 1994, 34, 551.
  • [3] GOFFART D., VAN DER VAL D. J., KLOMP E. M., HOOGSTRATEN H. W„ JANSSEN L. P. B. M., BREYSSE, L., TROLEZ Y., Three-dimensional flow modeling of a self-wiping corotating twin-screw extruder. Part I: The transportingg section. Polym. Eng. Sei., 1996, 36, 901.
  • [4] VAN DER VAL D. J., GOFFART D., KLOMP E. M„ HOOGSTRATEN H. W., JANSSEN L. P. B. M., Three- dimensional flow modeling of a self-wiping corotating twin-screw extruder. Part II: The kneading section. Polym. Eng. Sei., 1996, 36, 912.
  • [5] KURIYAMA M., INOMATA M., ARAI K, SAITO S., Numerical solution for the flow of highly viscous fluid in agitated vessel with anchor impeller. AlChEJ., 1982, 28. 385.
  • [6] TORREZ, C., ANDRE C., Power consumption of a Rushlon turbine mixing of viscous newlonian and shear-thinning fluids: comparison between experimental and numerical results. .Chem. Eng. Tech- nol„ 1998,21, 599.
  • [7] LAMBERTO D. J.. ALVAREZ M. M., MUZZIO F. J.. Experimental and computational investigation of the laminar flow structure in a stirred tank. .Chem. Eng. Sei., 1999, 54, 919.
  • [8] BARKER A., LAROCHE R.. Flow and mixing with Kenics static mixers. .Cray Channels. 1993, 15, 25.
  • [9] HOBBS D. M., SWANSON P. D.. MUZZIO F. J., Numerical characterization of low Reynolds number flow in the Kenics static mixer Chem. Eng. Sei.. 1998, 53, 1565.
  • [10] AREF HSterring by chaotic advection. J. Fluid Mech. 1984, 143, I.
  • [11] OTTINO J. M., The kinematic of mixing: Stretching, chaos and transport. Cambridge, Cambridge University Press, 1989.
  • [12] HOBBS D. M., MUZZIO F. J., Optimization of a static mixer using dynamical system techniques. Chem. Eng. Sei., 1998, 53,3199.
  • [13] CHENG H„ MANAS-ZLOCZAWER I., Chaotic features of flow in polymer processing equipment- relevance to distributive mixing Intern. Polymer Processing XII, 1997, 2, 83.
  • [14] CERBELLl S., ZALC J. M., MUZZIO F. J., The evolution of material lines curvature in deterministic chaotic flows.. Chem. Eng. Sei., 2000, 55, 363.
  • [15] BALDYGA J., ROŻEN A., MOSTERT F., A model of laminar micromixing with application to parallel chemical reactions. Chem. Eng. J., 1998, 69, 7.
  • [16] ZALC J. M., MUZZIO F. J., Parallel-competitive reactions in a two-dimensional chaotic flow. Chem. Eng. Sei.. 1999. 54, 1053.
  • [17] ROŻEŃ A., BARKER R. A., BALDYGA J., Application of an integral method of modelling of laminar micromixing. Chem. Eng. J., 2001, zaakceptowano do druku.
  • [18] ORSZAG S. A.. PATTERSON G. S.. Numerical simulations in turbulence in Statistical Models and Turbulence, ed. Rosenblatt M. and Van Atta. Springer-Verlag, Berlin, 1972, 12. 127.
  • [19] WANG L. P., CHEN S.. BRASSEUR J. G., WYNGAARD J. C, Examination of hypotheses in the Kolmogorov refined turbulence theory through high resolution simulations. Part I. Velocity field. J. Fluid. Mech., 1996, 309, 113.
  • [20] VAN DRIEST E. R., On turbulent flow near the wall. J. Aero. Sei., 1956, 23, 1007.
  • [21] KOLMOGOROW A N.. Equations of turbulent motion in an incompressible fluid. Izv. Akad. Nauk SSSR, Ser. Phys. VI, 1942, 1-2, 56.
  • [22] SPALART P., ALLMARS S., A one-equation turbulence model for aerodynamic flows. Technical report AIAA-92-0439, American Institute of Aeronautics and Astronautics, 1992.
  • [23] LAUNDER B. E., SPALDING D. B.. Lectures in Mathematical Models of Turbulence. London, Academic Press, 1972.
  • [24] LAUNDER B. E., Phenomenological modelling. Present and future, in Whither Turbulence? Turbulence at the Crossroads, ed. Lumley J. L., Berlin, Springer-Verlag, 1990, 439.
  • [25] SPECIALE C. G., Turbulence modelling: present and future in Whither Turbulence? Turbulence at the Crossroads, ed. Lumley J. L., Berlin, Springer-Verlag, 1990, 490.
  • [26] SPECIALE C. G., A consistency condition for non-linear algebraic Reynolds stress models in turbulence. Int. J. Non-Linerar Mechanics, 1998, 33, 579.
  • [27] YAMAMOTO M., Investigation of multiple-time-scale Reynolds stress model in homogeneous anisotropic turbulence Int. J. Heat and Fluid Flow, 1995, 16, 417.
  • [28] Smagorinski J., General circulation experiments with the primitive equations. Mon. Weath. Rev., 1963,91,99.
  • [29] REYNOLDS W. C., The potential and limitations of direct and large eddy simulations, in Whither Turbulence? Turbulence at the Crossroads, ed. Lumley J. L., Berlin, Springer-Verlag, 1990, 313.
  • [30] JENNE M., REUSS M., A critical assessment on the use of k-e turbulence models for simulation of the turbulent liquid flow induced by a Rushton-turbine in baffled stirred-tank reactors. Chem. Eng. Sei., 1999. 54, 3921.
  • [31] OSHINOVO L„ JAWORSKI Z„ DYSTER K.N., MARSHALL E., NIENOW A.W., Predicting the tangential vetocityfield in stirred tanks using the Multiple Reference Framr (MRF) model with validation by LDA measurements. Proceedings of the 10'h European Conference on Mixing, Amsterdam, Elsevier, 2000, 281.
  • [32] DERKSEN J., VAN DEN AKKER., Large eddy simulations on the flow driven by a Rushlon turbine. AIChEJ., 1999, 45,209.
  • [33] BARTELS C., BREUER M., DURST F., Comparison between direct numerical simulation and k-e. prediction of the flow in a vessel stirred by a Rushton turbine. Proceedings of the 10,h European Conference on Mixing, Amsterdam, Elsevier, 2000, 239.
  • [34] VENNEKER B. C., VAN DEN AKKER H. E. A., CFD calculations of the turbulent flow of shear thinning fluids in agitated tanks. Recent Progres en Genie des Precedes, 1997, 51, 179.
  • [35] JAWORSKI Z., Metody CFD w modelowaniu procesów transportu w mieszalnikach Prace Wydziału Inżynierii Chemicznej i Procesowej Politechniki Warszawskiej, 1999, XXV, z. 1-3, 23.
  • [36] CHASNOV J. R., The vciscous-convective subrange in nonstationary turbulence. Phys. Fluids, 1998, 10, 1191.
  • [37] CORRSIN S.. The isotropic turbulent mixer. Part II: Arbitrary Schmidt number. AIChEJ, 1964, 10, 870.
  • [38] BALDYGA J., Turbulent mixer model with application to homogeneous, instantaneous chemical reactions. Chem. Eng. Sei., 1989, 44, 1175.
  • [39] Fox R. O., The spectra! relaxation model of the scalar dissipation rate in homogeneous turbulence. Phys. Fluids, 1995, 7. 1082.
  • [40] CHAKRABARTI M., KERR R. M., HILL J. C., Direct numerical simulation of chemical selectivity in homogeneous turbulence. AIChEJ., 1995, 41,2356.
  • [41] MAO K. W., TOOR H. L., Second-order chemical reactions with turbulent mixing. Ind. Engng Chem. Fundam., 1971, 10, 192.
  • [42] PATTERSON G. K., Application of turbulence fundamentals to reactor modeling and scale-up. Chem. Eng. Comm., 1981, 8, 25.
  • [43] ZIPP R. P., PATTERSON G. K., Experimental measurements and Simulation of mixing and chemical reaction in a stirred tank. Canadian J. Chem. Eng., 1998, 76, 657.
  • [44] BlLGER R. W., Turbulent diffusion flames. Ann. Rev. Fluid. Mech., 1989,21, 101.
  • [45] POPE S. В., Turbulent Flows. Cambridge, Caqmbridge University Press, 2000.
  • [46] BALDYGA J., HENCZKA M., Turbulent mixing and parallel chemical reactions in a pipe- application of a closure model. Recent Progres en Genie des Precedes, 1997, 51,341.
  • [47] TSAI K., FOX R. O., PDF simulation of a turbulent series-parallel reaction in an axisymmetric reactor. Chem. Eng. Sei., 1994, 49, 5141.
  • [48] KOLHAPURE N. H., Fox R. 0„ CFD analysis of micromixing effects on polymerization in tubular low-density polyethylene reactors. Chem. Eng. Sei., 1999. 54, 3223.
  • [49] BALDYGA J., 0RC1UCH W., Barium sulphate precipitation in a pipe an experimental study and CFD modelling. Chem. Eng. Sei., 2001, 56, 2435.
  • [50] FALK L., SCHAER E., A PDF modelling of precipitation reactors. Chem. Eng. Sei., 2001, 56, 2457.
  • [51] HOLLANDER E. D„ DERKSEN i. J., BRUINSMA O. S. L, VAN DEN AKKER H. E. A., VAN ROSMALEN G. M, A numerical study on the coupling of hydrodynamics and orthokkinetic agglomeration. Chem. Eng. Sei., 2001, 56, 2531.
  • [52] MARCH1SIO D. L., BARRESI A. A.. Fox R. O.. BALDI G.. Comparison of different modeling approaches to turbulent precipitation. Proceedings of the 10lh European Conference on Mixing, Amsterdam. Elsevier, 2000, 77.
  • [53] PlTON D., FOX R. O., MARCANT B., Simulation of fine particles formation by precipitation using computational fluid dynamics. Canadian J. Chem. Eng.. 2000, 78. 983.
  • [54] MARCHISIO D. L.. FOX R. O., BARRESI A. A., BALDI G., A CFD approach to study the local importance of aggregation in precipitation, paper presented at 7th International Conference in Multiphase Flow in Industrial Plants, Bologna, Italy, 2000.
  • [55] MOLS B., OLIEMANS R. V. A., A turbulent diffusion model for particle dispersion and deposition in horizontal tube flow. International Journal of Multiphase Flow, 1998, 24, 55.
  • [56] BALDYGA J., ORCIUCH W., Some hydrodynamic aspects of precipitation. Powder Technology, 2001. w druku.
  • [57] SATO Y., HISHIDA K., Transport process of turbulent energy in particle-laden flow. Int. J. Heat and Fluid Flow, 1996. 17. 202.
  • [58] CROVEC. T., On models for turbulence modulation in fluid-particle flows. International Journal of Multiphase Flow, 2000, 26, 719.
  • [59] SHILORKAR J. S., COIMBRA C. F. M., MCQUAY M. Q., Fundamental aspects of modeling turbulent particle dispersion in dilute flows. Prog. Energy Combust. Sei., 1996, 22. 363.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afa9db23-e6b8-45ab-94f0-13a13da42c57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.