PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nitroaromatic enzymatic biodegradation system in Phanerochaete chrysosporium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phanerochaete chrysosporium is an ubiquitous fungus having huge potential for application in biodegradation processes. Its enzymatic system, consisting of ligninases, membrane-associated oxidases and hydrogen peroxide generating enzymes is capable of degrading a wide range of pollutants like 2,4,6-trinitrotoluene, 2,5-dinitrophenol, 3,5-dinitrosalicylic acid or azodyes produced by military or civilian industry. Synergetic action between enzymes, based on providing substrates essential for their activity and their extreme low-specificity guarantees successful degradation of recalcitrant pollutants. Nevertheless, a development of a technique, taking into the account the type of pollutant, its concentration in the environment, its metabolic pathway and maintenance of the system is required. This paper presents a literature survey related to enzymatic system of a white rot fungus Phanerochaete chrysosporium and its potential application in biodegradation processes.
Rocznik
Strony
113--128
Opis fizyczny
Bibliogr. 94 poz., il. (w tym kolor.), rys.
Twórcy
autor
  • Institute of General Food Chemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
  • Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
autor
  • Institute of General Food Chemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
Bibliografia
  • 1. Williams MA, Reddy G, Quinn MJ, Johnson MS, Wildlife Toxicity Assessments for Chemicals of Military Concern 2015, 25-51.
  • 2. Gong P, Kuperman RG, Sunahara GI. Genotoxicity of 2,5-and 2,6-dinitrotoluene as measured by Tradescantia micronucleus(Trad-MN)bioassay. Mutat Res 2003, 538:13-18.
  • 3. Price RA, Pennington JC, Neumann D, Hayes CA, Larson SL. Technical Report EL-97-11 US Army Engineer Waterways Experiment Station, Vicksburg 1997.
  • 4. Lipczynska-Kochany E. Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogeneous phase: Photolysis in the presence of hydrogen peroxide versus the Fenton reaction. Chemosphere 1992, 24:1369-1380.
  • 5. Ek H, Nilsson E, Dave G. Effects of TNT leakage from dumped ammunition on fish and invertebrates in static brackish water systems. Ecotox Environ Saf 2008, 69:104-111.
  • 6. Sekhar PK, Wignes F, Trace detection of research department explosive (RDX) using electrochemical gas sensor. Sens Act B: Chem 2016, 227:185-190.
  • 7. Rezaei B. Using of multi-walled carbon nanotubes electrode for adsorptive stripping voltammetric determination of ultratrace levels of RDX explosive in the environmental samples. J Haz Mat 2010, 83:138-144.
  • 8. Anasonye F, Winquist E, Räsänen M, Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. Int Biodeterior 2015, 105:7-12.
  • 9. Baker PW, Charlton A, Hale MD. Increased delignification by white rot fungi after pressure refining Miscanthus. Biores Tech 2015, 189:81-86.
  • 10. Erkurt EA, Ünyayar A, Kumbur H. Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem 2007, 42:1429-1435.
  • 11. Koprivanac N, Vujevic D. Degradation of an azo dye by fenton type processes assisted with UV irradiation. Int J Chem React Eng 2007, 5:1-11.
  • 12. Verma P, Baldrian P, Nerud F. Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere 2003, 50:975.
  • 13. Guivarch E, Trevin S, Lahitte C, Oturan MA, Degradation of azo dyes in water by Electro-Fenton process. Environ Chem Lett 2003, 1:38.
  • 14. Stock NL, Peller J, Vinodgopal K, Kamat PV, Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol 2000, 34:17-47.
  • 15. Lin H, Chen Z, Megharaj M, Naidu R, Biodegradation of TNT using Bacillus mycoides immobilized in PVA-sodium alginate-kaolin. App Clay Sci 2013, 83-84:336-342.
  • 16. Zhang C, Xu W, Yan P. Overcome the recalcitrance of eucalyptus bark to enzymatic hydrolysis by concerted ionic liquid pretreatment. Process Biochem 2015, 50:2208-2214.
  • 17. Nousiainen P, Kontro J, Manner H, Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genet Biol 2014, 72:137-14.
  • 18. Hibbett DS, Binder M, Bischoff JM. Higher-level phylogenetic classification of the Fungi. Mycol Res 2007, 111:509-547.
  • 19. Burdsall H. Mycologia Memoir 1985, 10, 61-63.
  • 20. Nakasone K. Mycologia Memoir 1990, 15, 224-225.
  • 21. Mougin C, Pericaud C, Dubroca J, Asther M. Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete. Soil Biol. Biochem. 1997, 29:1321-1324.
  • 22. Brahushi F, Kengara FO, Song Y. Fate Processes of Chlorobenzenes in Soil and Potential Remediation Strategies: A Review. Pedosphere 2017, 27:407-420.
  • 23. De S, Perkins M. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium. J Haz Mat 2006, 135:350-354.
  • 24. Eaton D. Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: A ligninolytic fungus. Enzyme and Microbial Technology 1985, 7:194-196.
  • 25. Podgornik H, Grgić I, Perdih A. Decolorization rate of dyes using lignin peroxidases of Phanerochaete chrysosporium. Chemosphere 1999, 38:1353-1359.
  • 26. Madaj R, Kalinowska H, Sobiecka E, Utilisation of nitrocompounds. Biotechnology and Food Sciences 2016, 2:63-73.
  • 27. Xu P, Zeng G, Huang D. Metal bioaccumulation, oxidative stress and antioxidant defenses in Phanerochaete chrysosporium response to Cd exposure. Ecological Engineering 2016 87:150-156.
  • 28. Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotech Adv 2009, 2:195-226.
  • 29. Zhao MH, Zhang CS, Zeng GM, Toxicity and bioaccumulation of heavy metals in Phanerochaete chrysosporium. Trans Nonferr Metal Soc China 2016, 5:1410-1418.
  • 30. Espinosa-Ortiz EJ, Rene ER, Guyot F, van Hullebusch ED, Lens P. Biomineralization of tellurium and selenium-tellurium nanoparticles by the white-rot fungus. Int Biodeterior Biodegradation 2017, 124:258-266.
  • 31. Rieble S, Joshi DK, Gold MH, Aromatic Nitroreductase from the Basidiomycete, Biochem Biophys Res Commun. 1994, 205:298-304.
  • 32. Fournier D, Monteil-Rivera F, Halasz A. Degradation of CL-20 by white-rot fungi. Chemosphere 2006, 63:175-181.
  • 33. Reddy C. The potential for white-rot fungi in the treatment of pollutants. Curr Opinion Biotech 1995, 6:320-328.
  • 34. Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK. Physical and enzymatic properties of Lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb Technol 1989, 11:322-328.
  • 35. Rothschild N, Hadar Y, Dosoretz CG, Lignin Peroxidase Isozymes from Phanerochaete chrysosporium can be enzymatically dephosphorylated. Appl Environ Microbiol 1997, 63:857-861.
  • 36. Wang P, Hu X, Cook S, Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J Microbiol Biotechnol 2008, 24:2205-2212.
  • 37. Renganthan V, Miki K, Gold MH, Multiple molecular forms of diarylpropane oxygenase, an H2O2-requiring, lignin-degrading enzyme from Phanerochaete chrysosporium. Arch Biochem Biophys 1985, 241:30:314.
  • 38. Andersson LA, Renganthan V, Chiu AA, Loehr TM, Gold MH. Spectral characterization of diarylpropane oxygenase, a novel peroxide-dependent, lignindegrading heme enzyme. J Biol Chem 1985, 260:6080-6087.
  • 39. Alam MZ, Mansor MF, Jalal KCA. Optimization of lignin peroxidase production and stability by Phanerochaete chrysosporium using sewage-treatment-plant sludge as substrate in a stirred-tank bioreactor. J Ind Microbiol Biotechnol 2009, 36:757-764.
  • 40. Tien M, Kirk TK, Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci U S A 1984, 81:2280-2284.
  • 41. Wen X, Jia Y, Li J. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium - A white rot fungus. Chemosphere 2009, 75:1003-1007.
  • 42. Gold MH, Kuwahara M, Chiu AA, Glenn JK. Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem and Biophys 1984, 234:353-362.
  • 43. Edwards SL, Raag R, Wariishi H, Gold MH, Poulos TL Crystal structure of lignin peroxidase. Proc Natl Acad Sci U S A 1993, 90:750-754.
  • 44. Abdel-Hamid AM, Solbiati JO, Cann IKO, Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 2013, 82:1-28.
  • 45. Falade AO, Nwodo UU, Iweriebor BC, Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 2016, doi: 10.1002/mbo3.394
  • 46. Villalba LL, Fonesca MI, Giorgio M, Zapata PD. White Rot Fungi Laccases for Biotechnological Applications. Recent Pat DNA Gene Seq 2010, 4:106-112.
  • 47. Rodriguez CS, Santoro R, Cameselle C, Sanroman A, Laccase production in semi-solid cultures of Phanerochaete chrysosporium. Biotechnol Lett 1997, 19:995-998.
  • 48. Pakhadnia YG, Malinouski NI, Lapko AG. Purification and characteristics of an enzyme with both bilirubin oxidase and laccase activities from mycelium of the basidiomycete Pleurotus ostreatus. Biochem (Moscow) 2009, 74:1027-1034.
  • 49. Jordaan J, Pletschke BI, Leukes WD, Purification and partial characterization of a thermostable laccase from an unidentified basidiomycete. Enzyme Microb Technol 2004, 34:635-641.
  • 50. Zou YJ, Wang HX, Ng TB, Huang CY, Zhang JX, Purification and characterization of a novel laccase from the edible mushroom Hericium coralloides. J Microbiol 2012, 50:72-78.
  • 51. Vite-Vallejo OCB, Palomares LA, Dantán-González E, The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase. Enzyme Microb Technol 2009, 45:233-239.
  • 52. Podgornik H, Stegu M, Zibert E, Perdih A, Laccase production by Phanerochaete chrysosporium ‒ an artefact caused by Mn(III)? Lett Appl Microbiol 2001, 32:407-411.
  • 53. Srinivasan C, Dsouza TM, Boominathan K, Reddy CA, Demonstration of Laccase in the White Rot Basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol 1995, 61:4274-4277.
  • 54. Claus H. Laccases: structure, reactions, distribution. Micron 2004, 35:93-96.
  • 55. Enguita FJ, Martins LO, Henriques AO, Carrondo MA. Crystal Structure of a Bacterial Endospore Coat Component. J Biol Chem 2003, 278:19416-19425.
  • 56. Wang J, Feng J, Jia W, Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels 2015, doi: 10.1186/s13068-015-0331-y
  • 57. Palma C, Martı́nez A.t., Lema J, Martı́nez M.j, Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. J Biotechnol 2000 77:235-245.
  • 58. Gu L, Lajoie C, Kelly C. Expression of a Phanerochaete chrysosporium Manganese Peroxidase Gene in the Yeast Pichia pastoris. Biotechnol Progress 2003, 19:1403-1409.
  • 59. Christian VV, Shrivastava R, Novotný Č, Vyas BRM, Decolorization of sulfonphthalein dyes by manganese peroxidase activity of the white-rot fungus Phanerochaete chrysosporium. Folia Microbiol 2003, 48:771-774.
  • 60. Glenn JK, Akileswaran L, Gold MH. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 1986, 251:688-696.
  • 61. Aitken MD, Irvine RL, Characterization of reactions catalyzed by manganese peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 1990, 276:405-414.
  • 62. Paszczyński A, Crawford RL, Huynh V-B. Manganese peroxidase of Phanerochaete chrysosporium: Purification. Methods in Enzymology Biomass Part B: Lignin, Pectin, and Chitin 1988, 264-270.
  • 63. Wariishi H, Valli K,Renganathan V, Gold MH, Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J Biol Chem 1989, 264:14185-91.
  • 64. Urek R, Pazarlioglu N, Purification and partial characterization of manganese peroxidase from immobilized Phanerochaete chrysosporium. Process Biochem 2004, 39:2061-68.
  • 65. Sundaramoorthy M, Gold MH, Poulos TL, Ultrahigh (0.93Å) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: Implications for the catalytic mechanism. J Inorg Biochem 2010, 104:683-690.
  • 66. Hofrichter M, Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 2002, 30:454-466.
  • 67. Daou M, Faulds CB, Glyoxal oxidases: their nature and properties. World J Microbiol Biotechnol 2017.
  • 68. Orth AB, Denny M, Tien M, Overproduction of Lignin-Degrading enzymes by an Isolate of Phanerochaete chrysosporium. Appl Environ Microbiol, 1991, 2591-2596.
  • 69. Magalhaes DB, Carvalho MEA, Bon E, Neto JSA, Kling SH, Colorimetric assay for lignin peroxidase activity determination using methylene blue as substrate. Biotechnol Tech 1996, 273-276.
  • 70. Srinivasan C, D’Souza TM, Boominathan K, Reddy CA, Demonstration of Laccase in the White Rot Basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol 1995, 4274-4277.
  • 71. Kersten PJ, Kirk TK, Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 1987, 169:2195-2201.
  • 72. Son Y-L, Kim H-Y, Thiyagarajan S, Heterologous Expression of Phanerochaete chrysoporium glyoxal oxidase and its application for the coupled reaction with manganese peroxidase to decolorize malachite green. Mycobiol 2012,40:258.
  • 73. Asada Y, Watanabe A, Ohtsu Y, Kuwahara M. Purification and Characterization of an Aryl-alcohol Oxidase from the Lignin-degrading Basidiomycete Phanerochaete chrysosporium. Biosci Biotechnol Biochem 1995, 59:1339-1341.
  • 74. Eriksson K-E, Pettersson B, Volc J, Musilek V. Formation and partial characterization of glucose-2-oxidase, a H2O2 producing enzyme in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 1986, 257-262.
  • 75. Artolozaga MJ, Kubátová E, Volc J, Kalisz HM. Pyranose 2-oxidase from Phanerochaete chrysosporium - further biochemical characterisation. Appl Microbiol Biotechnol 1997, 47:508-514.
  • 76. Pisanelli I, Kujawa M, Spadiut O. Pyranose 2-oxidase from Phanerochaete chrysosporium - expression in E. coli and biochemical characterization. J Biotechnol 2009, 142:97-106.
  • 77. Kim H-Y, Song H-G., Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungus Irpex lacteus. Appl Microbiol Biotechnol 2003, 61:150-156.
  • 78. Stahl J, Rasmussen S, Aust S, Reduction of Quinones and Radicals by a Plasma Membrane Redox System of Phanerochaete chrysosporium. Arch Biochem Biophys 1995, 322:221-227.
  • 79. Urek RO, Pazarlioglu NK, Enhanced production of manganese peroxidase by Phanerochaete chrysosporium. Brazilian Arch Biol Technol 2007, 50:913-920.
  • 80. Cancel AM, Orth AB, Tien M, Lignin and veratryl alcohol are not inducers of ligninolytic system of Phanerochaete chrysosporium. Appl Environ Microbiol 1993, 59:2909-13.
  • 81. Gutiérrez A, Martínez AT, Biodegradación de la lignina: Una perspectiva actual. Rev Iberoam Micol 1996, 13:18-23.
  • 82. Stahl JD, Aust SD. Plasma membrane dependent reduction of 2,4,6-TNT by Phanerochaete chrysosporium. Biochem Biophys Res Commun 1993, 192:471-476.
  • 83. Stahl JD, Aust SD, Biodegradation of 2,4,6-trinitrotoluene by the white rot fungus Phanerochaete chrysosporium. In: Spain J C, editor. Biodegradation of nitroaromatic compounds. New York, NY: Plenum Press 1995, 117-134.
  • 84. Bayman P, Radkar GV, Transformation and tolerance of TNT (2,4,6-trinitrotoluene) by fungi. Int Biodeterior Biodegradation 1997, 39:45-53.
  • 85. Perkins MW, De S, Frederick L, Dutta SK, Ligninolytic and Nonligninolytic Mineralization of Trinitrotoluene by Several White Rot Basidiomycetes. Bioremediation 1995, J 9:77-85.
  • 86. Fernando T, Bumpus JA, Aust SD. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. App Environ Microbiol 1990, 56:1666-1671.
  • 87. Goszczynski S, Paszczynski A, Pasti-Grigsby MB, New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol 1994, 176:1339-1347.
  • 88. Dehghanifard E, Jafari AJ, Kalantary RR, Biodegradation of 2,4-dinitrophenol with laccase immobilized on nano-porous silica beads. Iranian J Environ Health Sci Eng 2013, 10:25.
  • 89. Phelan JM, Barnett JL, J Chem Eng Data 2001 46:375-376.
  • 90. Kulkarni M, Chaudhari A, Microbial remediation of nitro-aromatic compounds: An overview. J Environ Manage 2007, 85: 496-512.
  • 91. Spiker JK, Crawford DL, Crawford RL, Influence of 2,4,6-Trinitrotoluene(TNT) Concentration on the Degradation of TNT in Explosive-Contaminated Soils by the White Rot Fungus Phanerochaete chrysosporium. Appl Environ Microbiol 1992, 3199-3202.
  • 92. Johansen KS, Lytic Polysaccharide Monooxygenases: The Micriobial Tool for Lignocellulose Degradation. Trends Plant Sci 2016, 926-936.
  • 93. Macdonald J, Suzuki H, Master ER, Expression and regulation of genes encoding lignocellulose-degrading activity in genus Phanerochaete. Appl Microbiol Biotechnol 2012, 94:339-351.
  • 94. Radtke C, Cook WS, Anderson A, Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soils. Appl Microbiol Biotechnol 1994, 2:274-280.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afa8e957-07f8-4224-bfa3-24eaeaf40f00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.