PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of Parameters for a Damped Oscillator Excited by a Sequence of Random Pulses

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is another step in discussion concerning the method of determining the distributions of pulses forcing vibrations of a system. Solving a stochastic problem for systems subjected to random series of pulses requires determining the distribution for a linear oscillator with damping. The goal of the study is to minimize the error issuing from the finite time interval. The applied model of investigations is supposed to answer the question how to select the parameters of a vibrating system so that the difference between the actual distribution of random pulses and that determined from the waveform is as small as possible.
Rocznik
Strony
645--652
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. BARAŃSKI R., WSZOŁEK G. (2013), Educational Implementation of a Sound Level Meter in the LabVIEW Environment, Archives of Acoustics, 38, 1, 19-26.
  • 2. DlPAOLA M., VASTA M. (1997), Stochastic integro- differential and differential equations of non-linear systems excited by param.etric Poisson pulses, International Journal of Non-Linear Mechanics, 32, 855-862.
  • 3. HUANG Z., ZHU W., SUZUKI Y. (2000), Stochastic averaging of strongly non-linear oscillators under combined harmonic and wh.ite-n.oi.se excitations, Journal of Sound and Vibration, 238, 233-256.
  • 4. IWANKIEWICZ R., NIELSEN S. (1992), Dynamic response of hysteretic systems to Poisson-distributed pulse trains, Probabilistic Engineering Mechanics, 7, 135-148.
  • 5. JABŁOŃSKI M., OZGA A. (2006), On statistical parameters characterizing vibrations of dam.ped oscillator forced by stochastic im.pulses, Archives of Acoustics, 31, 4 Supplement, 65-73.
  • 6. JABŁOŃSKI M., OZGA A. (2008), Statistical characteristics of vibrations of a string forced by stochastic forces, Mechanics/AGH University of Science and Technology, 27, 1-7.
  • 7. JABŁOŃSKI M., OZGA A. (2009), Statistical Characteristics of the Dam.ped Vibrations of a String Excited by Stochastic Forces, Archives of Acoustics, 34, 4, 601- 612.
  • 8. JABŁOŃSKI M., OZGA A. (2010), Distribution of stochastic impulses acting on. an. oscillator as a function of its m.otion, Acta Phys. Pol. A, 118, 1, 74-77.
  • 9. JABŁOŃSKI M., OZGA A., KORBIEŁ T., PAWLIK P. (2011), Determining the distribution of stochastic impulses acting on. a high, frequency system, through, an. analysis of its vibrations, Acta Phys. Pol. A, 119, 6-A, 977-980.
  • 10. JABŁOŃSKI M., OZGA A. (2012), Determining the distribution of values of stochastic impulses acting on. a discrete system, in. relation to their intensity, Acta Phys. Pol. A, 121, 1-A, 175A-179A.
  • 11. JABŁOŃSKI M., Ozga A. (2013), Distribution of random pulses acting on a vibrating system as a function of its motion, AGH University of Science and Technology Press, Kraków.
  • 12. JURKIEWICZ J., SNAKOWSKA A., GORAZD Ł. (2012), Experimental verification of the theoretical model of sound radiation from an unflanged duct with low mean flow, Archives of Acoustics, 37, 2, 227-236.
  • 13. KASPRZAK C., SKRODZKA E., WICIAK J. (2014), The Effect of Wind Turbine Infrasound Emission on Subjectively Rated Activation Level, Acta Phys. Pol. A, 125, 4-A, A-45.
  • 14. KASPRZYK S. (2011), Applicability of the Fourier expansion method of separation of variables in the linear discrete-continuous systems with distributional coefficients, Acta Phys. Pol. A, 119, 6-A, 981-985.
  • 15. KONIECZNY J., KOWAL J., RACZKA W., SIBIELAK M. (2013), Bench Tests of Slow and, Full Active Suspensions in Terms of Energy Consumption, Journal of Low Frequency Noise, Vibration and Active Control, 32, 81-98.
  • 16. KOYLUOGLU H., NIELSEN S., IWANKIEWICZ R. (1994), Reliability Of Nonlinear Oscillators Subject To Poisson Driven Impulses, Journal of Sound and Vibration, 176, 19-33.
  • 17. OZGA A. (2013), Determining Parameters of an RLC Circuit Response to a Single Pulse, Acta Phys. Pol. A, 123, 6, 1034-1039.
  • 18. OZGA A. (2014), Distribution of random pulses forcing a damped oscillator determined, in a finite time interval, Acta Phys. Pol. A, 125, 4-A, A-159-A-163.
  • 19. PlECHOWICZ J. (2011), Estimating Surface Acoustic Impedance With the Inverse Method,, International Journal of Occupational Safety and Ergonomics, 17, 3, 271-276.
  • 20. RACZKA W., SIBIELAK M., KOWAL J., KONIECZNY J. (2013), Application of an SMA Spring for Vibration Screen Control, Journal of Low Frequency Noise Vibration and Active Control, 32, 117-132.
  • 21. RDZANEK W.J., RDZANEK W.P., ENGEL Z. (2011), Asymptotic formulae for the acoustic power output of a simply-supported circular plate, ACUSTICA, 87, 206-214.
  • 22. ROBERTS J.B. (1972) System response to random, impulse, Journal of Sound and Vibration, 24, 23-34.
  • 23. SIBIELAK M., KONIECZNY J., KOWAL J., RACZKA W., MARSZALIK D. (2013), Optimal Control of Slow-Active Vehicle Suspension - Results of Experimental Data, Journal of Low Frequency Noise, Vibration and Active Control, 32, 99-116.
  • 24. SNAKOWSKA A., JURKIEWICZ J. (2010), Efficiency of energy radiatiofrom an unflanged cylindrical duct in case of multimode excitation, Acta Acustica/Acustica, 96, 416-424.
  • 25. SOBIECHOWSKI C., SOCHA L. (2000), Statistical linearization of the duffing oscillator under non-Gaussian external excitation, Journal of Sound and Vibration, 231, 19-35.
  • 26. TROJANOWSKI R., WICIAK J. (2010), Preliminary Results of Laboratory Tested System for Active Control of Plates VIA Lab VIEW and, Piezoelectric Elements, Acta Phys. Pol. A, 118, 1, 168-171.
  • 27. TYLIKOWSKI A., MAROWSKI W. (1986), Vibration of a non-linear single degree of freedom system due to Poissonian impulse excitation, International Journal of Non-linear Mechanics, 21, 229-238.
  • 28. WlCIAK J. (2007), Modelling of vibration and noise control of a submerged circular plate, Archives of Acoustics, 32, 4, 265-270.
  • 29. WICIAK M., TROJANOWSKI R. (2014), Numerical Analysis of the Effectiveness of Two-part Piezoactuators in Vibration Reduction of Plates, Acta Phys. Pol. A, 125, A183-A189.
  • 30. WSZOŁEK T., KŁACZYŃSKI M., MLECZKO D., OZGA A. (2014), On Certain Problems Concerning Environmental Impact Assessment of Wind Turbines in Scope of Acoustic Effects, Acta Phys. Pol. A, 125, 4- A, A-38-A-44.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-afa82ea8-aafb-4cd9-b7fd-32f974fd84a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.