Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the research progress of ammonium bisulfate (ABS) volatilization in coal-fired power plants the SCR denitrification process was reviewed. Combination with self-made experiments, SEM, flue gas analyzer and TG-DTG curves of ABS and ion chromatography. The volatilization and condensation characteristics of ABS were investigated carefully. Results show that as the temperature increased by 50 °C, the ABS/AS volatilization rate increased by an order of magnitude. The decomposition process of ABS should have a two-step reaction. The reaction in the initial volatilization stage is ABS dehydration turned into (NH4)2S2O7. The reaction in the rapid volatilization stage is (NH4)2S2O7 decomposed into NH3, N2, SO2 and H2O. There is an inter-section in the reac-tion temperature range (especially 300 °C) between the two-step reaction. This research provides an experimental basis for temperature control of ABS to avoid air pre-heater fouling.
Czasopismo
Rocznik
Tom
Strony
30--38
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
autor
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engine-ering, North China Electric Power University, Baoding, 071003, PR China
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou,014010, Inner Mon-golia, PR China
autor
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engine-ering, North China Electric Power University, Baoding, 071003, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
autor
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engine-ering, North China Electric Power University, Baoding, 071003, PR China
autor
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou,014010, Inner Mon-golia, PR China
autor
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engine-ering, North China Electric Power University, Baoding, 071003, PR China
Bibliografia
- 1. Wang, L.L., Yang, M., Wu, S.S., Huang, C.Y., Zhang, Q.W., Zhu, L., Yao, Y., He, J.L., Kong, F.H. & He, J. (2016). Difficulties and countermeasures of SCR denitrification system operation in ultra low emission situation. THERMAL POWER GENERATION. 45(12), 19–24. DOI: 10.19666/j. rlfd.201912286.
- 2. Ma, S.C., Deng, Y., Wu, W.L., Zhang, L.N., Ma, J.X. & Zhang, X.N. (2016). Experimental research on characteristic of ABS formation in the process of SCR. J. Chinese Soc. Power Engin. 36(2), 143–150. DOI: 10.3969/j.issn.1674-7607.2016.02.010.
- 3. Mark, A., Nan-Yu, T. & J.A., D. (2003). Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts. J. Catal. 213(2), 115–125. DOI: 10.1016/S0021-9517(02)00031-3.
- 4. Ya, J.S., H, S., Yu, H.Z, Hong, M.F., Ya, P.Z. & Lin, J.Y. (2016). Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Fuel Proces. Technol. 150, 141–147. DOI: 10.1016/j. fuproc.2016.05.016.
- 5. Srivastava, R.K., Hall, R.E., Khan, S., Culligan, K. & Bruce, W.L. (2005). Nitrogen oxides emission control options for coal-fire delectric utility boiler. J. Air & Waste Manag. Assoc. 55, 1367–1388. DOI: 10.1080/10473289.2005.10464736.
- 6. Wang, Y.C. & Tang, G.H. (2016). Prediction of sulfuric acid dew point temperature on heat transfer fin surface. Appl. Thermal Engin. 98, 492–501. DOI: 10.1016/j.applthermaleng.2015.12.078.
- 7. Zhu, Y.Q., Zhou, W.H., Xia, C. & Hou, Q.C. (2022). Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission. Atmosphere. 13, 1–21. DOI: 10.3390/atmos13050731.
- 8. Zhou, C.Y., Zhang, L.N., Deng, Y. & Ma, S.C. (2016). Research progress on ammonium bisulfate formation and control in the process of selective catalytic reduction. Environ. Progress & Sustainable Energy. DOI: 10.1002/ep.12409.
- 9. Muzio, L., Bogseth, S., Himes, R., Chien, Y.C. & Rankin, D.D. (2017). Ammonium bisulfate formation and reduced load SCR operation. Fuel. 206, 180–189. DOI: 10.1016/j. fuel.2017.05.081.
- 10. Liu, K.W. & Chen, T.L. (2002). Studies on the thermal decomposition of ammonium sulfate. Chem. Res. Applic. 14(6), 737–738. DOI: 10.3969/j.issn.1004-1656.2002.06.038.
- 11. Wang, L.M., Bu, Y.F., Li, D.C., Tang, C.L. & Che, D.F. (2019). Single and multi-objective optimizations of rotary regenerative air preheater for coal-fired power plant considering the ammonium bisulfate deposition. Internat. J. Thermal Sci. 136, 52–59. DOI: 10.1016/j.ijthermalsci.2018.10.005.
- 12. Zhao, H., Zhang, J.K. & Zhang, K. (2018). Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: Effect of deposition surface temperature. Fuel Proc. Technol. 179, 359–368. DOI: 10.1016/j.fuproc.2018.07.030.
- 13. Luo, M., Zhao, L.L. & Li, S.Y. (2016). Numerical simulation of ash deposition with adhesion of NH4HSO4 in an air preheater. Chin. Soc. Power Eng. 36, 883–888. DOI: 10.3969/j. issn.1674-7607.2016.11.005.
- 14. Chen, H., Pan, P.Y., Wang, Y.G. & Zhao, Q.X. (2016). Field study on the corrosion and ash deposition of low-temperature heating surface in a large-scale coal-fired power plant. Fuel. 208, 149–159. DOI: 10.1016/j.fuel.2017.06.120.
- 15. Wei, W., Sun, F.Z. & Ma, L. (2018). Effect of fine ash particles on formation mechanism of fouling covering heat exchangers in coal-fired power plants. Appl. Thermal Engin. 142, 269–277. DOI: 10.1016/j.applthermaleng.2018.06.086.
- 16. Chen, H., Pan, P.Y., Shao, H.S., Wang, Y.G. & Zhao, Q.X. (2017). Corrosion and viscous ash deposition of a rotary air preheater in a coal-fired power plant. Appl. Thermal Engin. 113, 373–385. DOI: 10.1016/j.applthermaleng.2016.10.160.
- 17. Bu, Y.F., Wang, L.M., Chen, X., Wei, X.Y., Deng, L. & Che, D.F. (2018). Numerical analysis of ABS deposition and corrosion on a rotary air preheater. Appl. Thermal Engin. 131, 669–677. DOI: 10.1016/j.applthermaleng.2017.11.082.
- 18. Cheng, M., Chen, Z., Liao, Q., Zhang, J., Ding, Y. & Zhu, X. (2019). Experimental research on the ash deposition characteristics of 3-D finned tube bundle. Appl. Thermal Engin. 153, 556–564. DOI: 10.1016/j.applthermaleng.2019.03.051.
- 19. Burke, J.M. & Johnson, K.L. (1982). Ammonium sulfate and bisulfate formation in air preheaters. British Med. J. 329(7463), 446.
- 20. Pan, L., Liu, Q.Y. & Zhenyu Liu. (2012). Behaviors of NH4HSO4 in SCR of NO by NH3 over different cokes. Chem. Engin. J. (181–182), 169–173. DOI: 10.1016/j.cej.2011.11.051.
- 21. Menasha, J., Dunn-Rankin, D., Muzio, L. & Stallings, J. (2011). Ammonium bisulfate formation temperature in a bench--scale single-channel air preheater. Fuel. 90, 2445–2453. DOI: 10.1016/j.fuel.2011.03.006.
- 22. Zhu, Z.P., Niu, H.X., Liu, Z.Y. & Liu, S. (2000). Decomposition and Reactivity of NH4HSO4 on V2O5/AC Catalysts Used for NO Reduction with Ammonia. J. Catal. 195(2), 268–278. DOI: 10.1006/jcat.2000.2961.
- 23. Shu, H., Zhang, Y.H., Fan, H.M., Zhang, Y.P. & Yang, L. (2015). FT-IR study of formation and decomposition of ammonium bisulfates on surface of SCR catalyst for nitrogen removal. CIESC Journal. 66(11), 4460–4468. DOI: 10.11949/j. jssn.0438-1157.20150450.
- 24. Ma, S., Jin, X., Sun, Y. & Cui, J. (2010). The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof. THERMAL POWER GENERATION. 39(8),12–17. DOI: 10.3969/j. issn.10022336.4.2010.08.012.
- 25. Ma, S., Guo, M., Song, H., Chen, G., Yang, J., Zang, B. & Li, D. (2014). Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process. THERMAL POWER GENERATION. 43(2), 75–78, 86. DOI: 10.3969/j.issn.1002-3364.2014.02.075.
- 26. Ma, S., Deng, Y., Wu, W. & Zhang, L. (2016). Reaction characteristic of by-product ammonium bisulfate from SCR denitrification and fly ash in air preheater. Chinese J. Environ. Engin. 10(11), 6563–6570. DOI: 10.12030/j.cjee.201507027.
- 27. Ma, S., Deng, Y., Wu, W., Tan, Y., Zhang, L., Chai, F., Sun, P. & Zhang, X. (2016). Corrosion Characteristics of Downstream Metal Material of Boiler System in Solution of By-product Ammonium Bisulfate from SCR Dinitrification. J. Chinese Society for Corrosion and Protection. 36(4), 335–342. DOI: 10.11902/1005.4537.2015.155.
- 28. Li, J. & Zhang, G. (1992). Investigation of the Kinetics and Mechanism of Decomposition of Ammonium Hydrogen Sulfate. ACTA PHYSICO-CHIMICA SINICA. 8(1), 123–127. DOI: 10.3866/PKU.WHXB19920122.
- 29. Raisaku, K. & Kohei, U. (1970). Mechanism, kinetics, and equilibrium of thermal decomposition of ammonium sulfate. Ind. Eng. Chem. Process Des Develop. 9(4), 489–494.
- 30. Fan, Y. & Cao, F. (2011). Thermal Decomposition Kinetics of Ammonium Sulfate. J. Chem. Engin. Chin. Univ. 25(2), 341–346. DOI: 10.3969/j.issn.1003-9015.2011.02.028.
- 31. Tang, H., Li, H., Yang, H., Lin, Z., Zhuang, K., Lu, Q. & Li, W. (2018). Research progress on the formation and decomposition mechanism of ammonium-sulfate salts in NH3--SCR technology. Chem. Ind. Engin. Progress. 37(3), 822–831. DOI: 10.16085/j.issn.1000-6613.2017-0797.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af9fca9a-ba1c-4afc-bd6f-2cc99c611684