Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The recombinant catalase isolated from a psychrotolerant microorganism belonging to Serratia genus exhibits a high activity in a wide range of pH. Due to a great catalytic potential in operational conditions, it can be used in various industrial applications whereby it acts as a hydrogen peroxide scavenger. To reduce the cost of biocatalyst the enzyme encapsulation into a hydrogel structure was proposed. The obtained results showed a high activity of encapsulated catalase in acidic conditions (pH in range 4.4 - 6.6) and at low temperatures (6-15°C). Moreover, immobilized catalase exhibited a high stability in natural media, especially in milk. Its activity during peroxide decomposition in milk, the possibility of re-using, as well as the fixed bed reactor performance confirmed wide application possibilities. High values of enzyme and substrate concentrations led to the beads burst due to rapid oxygen diffusion from the capsules, thus they are limited.
Czasopismo
Rocznik
Tom
Strony
39--43
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Wroclaw University of Science and Technology, Department of Bioprocess and Biomedical Engineering, Norwida 4/6, 50-373 Wroclaw, Poland
autor
- Wroclaw University of Science and Technology, Department of Bioprocess and Biomedical Engineering, Norwida 4/6, 50-373 Wroclaw, Poland
Bibliografia
- 1. WHO Food Additives series no. 5 (1973). Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents.
- 2. Hsu, C.L., Chang, K.S. & Kuo, J.C. (2008). Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode. Food Control, 19, 223-230. DOI: 10.1016/j.foodcont.2007.01.004.
- 3. Kanyong, P., Rawlinson, S. & Davis, J. (2016). A non- -enzymatic sensor based on the redox of ferrocene carboxylic acid on ionic liquid film-modified screen-printed graphite electrode for the analysis of hydrogen peroxide residues in milk. J. Electroanalyt. Chem. 766, 147-151. DOI: https://doi.org/10.1016/j.jelechem.2016.02.006.
- 4. Law, B.A. (2010). Enzymes in dairy product manufacture. In Whitehurst R. J., Oort M. (Eds.), Enzymes in Food Technology, 92-93. Wiley-Blackwell, A John Wiley & Sons, Ltd., Publication.
- 5. Saha, B.A., Ali, M.Y., Chakraborty, M., Islam, Z. & Hira, A.K. (2003). Study on the Preservation of Raw Milk with Hydrogen Peroxide (H2O2) for Rural Dairy Farmers. Pakistan J. Nut., 2(1), 36-42. DOI: 10.3923/pjn.2003.36.42.
- 6. Sooch, B.S., Kauldhar, B.S. & Puri, M. (2017). Catalases. Types, Structure, Applications and Future Outlook. In R.C. Ray, C.M. Rossel (Eds.), Microbial Enzyme Technology in Food Applications, 241-250. Boca Raton, CRC Press.
- 7. Loncar, N. & Fraaije, MW. (2015). Catalases as biocatalysts in technical applications: current state and perspectives. Appl. Microbiol. Biotechnol. 99(8), 3351-3357. DOI: 10.1007/s00253-015-6512-6.
- 8. Choudhury A.K.R. (2014). Sustainable Textile Wet Processing: Applications of Enzymes, in Roadmap to Sustainable Textiles and Clothing. In S.S Muthu (Eds.), Eco-friendly Raw Materials, Technologies and Processing Methods, 217-219. Springer, ISBN 978-981-287-065-0. DOI: 10.1007/978-981-287-065-0.
- 9. Sarmiento, F., Peralta, R. & Blamey J.M. (2015). Cold and hot extremozymes: industrial relevance and current trends. Front. Bioeng. Biotechnol. 3, 1-15. DOI: 10.3389/fbioe.2015.00148.
- 10. Homaei, A.A., Sariri, R., Vianello, F. & Stevanato, R. (2013). Enzyme immobilization: an update. J. Chem. Biol. 6(4), 185-205. DOI: 10.1007/s12154-013-0102-9.
- 11. Dogac, Y.I., Cinar, M. & Teke, M. (2015). Improving of Catalase Stability Properties by Encapsulation in Alginate/ Fe3O4 Magnetic Composite Beads for Enzymatic Removal of H2O2. Prep. Biochem. Biotech. 45(2), 144-157. DOI: 10.1080/10826068.2014.907178.
- 12. Rios, G.M., Beelleville, M.P. & Paolucci, D., et al. (2004). Progress in enzymatic membrane reactors - a review. J. Membrane Sci. 242(1-2), 189-196, DOI: https://doi.org/10.1016/j.memsci.2003.06.004.
- 13. Franssen, M.C.R., Steunenberg, P., Scott, E.L., et al. (2013). Immobilized enzymes in biorenewables production. Chem. Soc. Rev. 42, 6491-6533. DOI: 10.1039/C3CS00004D.
- 14. Murtinho, D., Lagoa, A.R. & Garcia, F.A.P., et al. (1998). Cellulose Derivatives Membranes as Supports for Immobilisation of Enzymes. Cellulose. 5(4), 299-308. DOI: 10.1023/A:1009255126274.
- 15. Lowry, O., Rosebrough, N., Farr, A. & Randall, R., (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-270.
- 16. Safarik, I., Sabatkova, Z. & Safarikova, M. (2008). Hydrogen Peroxide Removal with Magnetically Responsive Saccharomyces cerevisiae Cells. J. Agric. Food Chem. 56, 7925-7928. DOI: 10.1021/jf801354a.
- 17. Farkye, NY. (2004). Cheese technology. Int. J. Dairy Technol. 5791-98.
- 18. Trusek-Holownia, A. (2003). Synthesis of ZAlaPheOMe, the precursor of bitter dipeptide in the two-phase ethyl acetate - water system catalyzed by thermolysin. J. Biotechnol. 102, 153-163. DOI: 10.1016/S0168-1656(03)00024-5.
- 19. Dogac, Y.I. & Teke, M. (2013) Immobilization of bovine catalase onto magnetic nanoparticles. Prepar. Biochem. Biotechnol. 43, 750-765. DOI:10.1080/10826068.2013.773340.
- 20. Silva, L.C.C. (2015). Preservatives and neutralizing substances in milk: analytical sensitivity of official specific and nonspecific tests, microbial inhibition effect, and residue persistence in milk. Ciência Rural, 1-13. DOI: 10.1590/0103-8478cr20141013.
- 21. Yildiz, H., Akyilmaz, E. & Dinckaya, E. (2004). Catalase Immobilization in Cellulose Acetate Beads and Determination of its Hydrogen Peroxide Decomposition Level by using a Catalase Biosensor. Artif. Cells Blood Substit. Immobil. Biotechnol. 32(3), 443-452. DOI: 10.1081/BIO-2000277507.
- 22. Görenek, G., Akyilmaz, E. & Dinckaya, E. (2004). Immobilisation of Catalase by Entrapping in Alginate Beads and Catalase Biosensor Preparation for the Determination of Hydrogen Peroxide Decomposition. Art. Cells, Blood Subst. 32(3), 453-461. DOI: 10.1081/BIO-200027518.
- 23. Trusek-Holownia, A. & Noworyta, A. (2015). Catalase immobilized in capsules in microorganisms removal from drinking water, milk and beverages. Desalin. Water Treat. 55(10), 2721-27727. DOI: 10.1080/19443994.2014.939857.
- 24. Miłek, J., Kwiatkowska-Marks, S. & Wójcik, M. (2011). Immobilization of catalase from Aspergillus niger in calcium alginate gel. Chemik 65(4), 305-308.
- 25. Al-Mayah, A.M.R. (2012). Simulation of Enzyme Catalysis in Calcium Alginate Beads. Enz. Res. 459190, 1-13. DOI: 10.1155/2012/459190.
- 26. Noworyta, A. & Trusek-Holownia, A. (2004). Modeling of enzymatic conversion in the catalytic gel layer located on a membrane surface. Desalination 162, 1-3, 327-334. DOI: 10.1016/S0011-9164(04)00066-9.
- 27. Trusek-Holownia, A. & Noworyta, A. (2015). Efficient utilization of hydrogel preparations with encapsulated enzymes- a case study on catalase and hydrogen peroxide degradation. Biotechnol. Reports 6, 13-19.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af9fc109-4f66-4ac4-9305-9ed147a34bef