PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on influencing factors of emergency power support for voltage source converter-based multi-terminal high-voltage direct current transmission system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Voltage source converter-based multi-terminal high-voltage direct current (VSCMTDC) transmission system can realize a multi-point power supply, multi-drop power receiving, and mutual coordination between the converter stations to ensure the reliability of the transmission. Based on the PSCAD/EMTDC platform, a five-terminal DC transmission system model is established. According to the fast power regulation capability and overload capacity of theVSC-MTDC power transmission system, an analysis of additional emergency power support for a transmission system under large disturbance conditions was carried out. A new control strategy for emergency power support that introduces its basic principle is proposed in this paper. It uses the short-term overload capability of the DC system. By changing the power reserve of the converter station and the electrical distance between the converter stations, the influence of the power reserve and the electrical distance on the emergency power supply guarantee is analyzed the stability of the system is improved, thereby improving the sudden change of power caused by voltage fluctuations, and the feasibility of the control module is verified by PSCAD simulation. The simulation results show that when the system power supply suddenly changes, the converter stations at a short distance and large power reserve has a better effect on emergency power supply protection. A comparative study of the active power support of a single converter station and multiple converter stations is carried out. The research results show that the use of emergency power support in the DC transmission system has a good effect on maintaining the stability of the inter-connection system and the reliability of the power supply.
Rocznik
Strony
881--894
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wz.
Twórcy
autor
  • Zhengzhou University of Light Industry, College of Electrical and Information Engineering China
autor
  • Zhengzhou University of Light Industry, College of Electrical and Information Engineering China
autor
  • Maintenance Company of State Grid Henan Electric Power Company China
autor
  • Zhengzhou University of Light Industry, College of Electrical and Information Engineering China
autor
  • Zhengzhou University of Light Industry, College of Electrical and Information Engineering China
  • Zhengzhou University of Light Industry, College of Electrical and Information Engineering China
Bibliografia
  • [1] Bianchi F.D., Dominguez-Garcia J.L., Gomis-Bellmunt O., Control of multi-terminal HVDC networks towards wind power integration: A review, Renewable and Sustainable Energy Reviews, vol. 55, pp. 1055–1068 (2016), DOI: 10.1016/j.rser.2015.11.024.
  • [2] Li C.S., Sheng T.Y., Fang Y., Li Y.K., Research on regional emergency DC power support strategy of VSC-MTDC transmission system, Electric Power Systems Research, vol. 70, no. 1, pp. 145–160 (2021), DOI: 10.24425/aee.2021.136058.
  • [3] Duan Y., Chen L., Zhang B.H., Wang D., Research on emergency DC power support in central China power grid, Power System Technology, vol. 36, no. 2, pp. 104–108 (2012), DOI: 10.13335/j.1000-3673.pst.2012.02.022.
  • [4] Wang X.G., Zhang H., Xu Z., Weng H., Xu F., Emergency power support for multiple DCs based on trajectory sensitivity, Electric Power Automation Equipment, vol. 34, no. 10, pp. 86–91 (2014), DOI: CNKI:SUN:DLZS.0.2014.10.014.
  • [5] Chen P., Li C., Zhou B., Fu Y., Yu R., VSC-HVDC emergency power support and dynamic area control error coordinated control strategy for improving the stability of asynchronous interconnected power grids, Transactions of China Electrotechnical Society, vol. 34, no. 14, pp. 3025–3034 (2019), DOI: 10.19595/j.cnki.1000-6753.tces.180737.
  • [6] Wang T., Li C.C., Wang Z.P., Mi D.K., Xiang Y., Coordinated modulation strategy considering multi-HVDC emergency for enhancing transient stability of hybrid AC/DC power systems, in CSEE Journal of Power and Energy Systems, vol. 6, no. 4, pp. 806–815 (2020), DOI: 10.17775/CSEEJPES.2019.02000.
  • [7] Weng H., Xu Z., Xu F., Tu Q.R., Research on constraint factor of emergency power support of HVDC systems, Proceedings of the Chinese Society of Electrical Engineering, vol. 34, no. 10, pp. 1519–1527 (2014), DOI: 10.13334/j.0258-8013.pcsee.2014.10.002.
  • [8] Li C.C., Wang T., Wang Z.P., Li T., Tang J.C., Coordinated multiple HVDC modulation emergency control for enhancing power system transient stability, 8-th Renewable Power Generation Conference (RPG 2019), pp. 1–6 (2019), DOI: 10.1049/cp.2019.0540.
  • [9] Wang S.S., Zhou X.X, Tang G.F., He Z.Y., Modeling of modular Multi-Level voltage source converter, Proceedings of the Chinese Society of Electrical Engineering, vol. 31, no. 24, pp. 1–8 (2011), DOI: 10.3334/j.0258-8013.pcsee.2011.24.005.
  • [10] Liu S., Mei H.M., Liu B., Li S.F., Zhang X.Y., Wang J.Q., AC fault characteristics of VSC - DC system with positive and negative sequence decoupling control, Journal of Power Systems and Automation, vol. 32, no. 2, pp. 68–76 (2020).
  • [11] Wang K., Yang S.C., Yao J.G., Li Y.P., Emergency DC power support with reactive power coordinated control for multi-circuit HVDC systems, Automation of Electric Power Systems, vol. 47, no. 3, pp. 103–107 (2011), DOI: 10.15961/j.jsuese.2015.03.019.
  • [12] Xue Y.S., Zhu X.Q., Abnormal influence of discrete control time on transient stability and its mechanism, Automation of Electric Power Systems, vol. 44, no. 22, pp. 112–118 (2020).
  • [13] Wu G., Zhang S.M., Research on Xinjiang Power Grid Dual UHV DC Outbound Control Strategy Based on DC Emergency Modulation Function, Electrotechnical Technology, vol. 20, no. 13, pp. 138–140 (2020), DOI: 10.19768/j.cnki.dgjs.
  • [14] Bao Y.H., Wang Y.K., Fang Y.J., Xu W., Peng H.M., DC power support for damping low frequency oscillations based on WAMS, Automation of Electric Power Systems, vol. 37, no. 21, pp. 118–122 (2013), DOI: CNKI:SUN:DLXT.0.2013-21-020.
  • [15] Liu Y.P., Xie S., Liang H.P., Xie Gan., Adaptive droop control of VSC-MTDC system considering voltage error between converter stations, Journal of Electrotechnical Technology, vol. 35, no. 15, pp. 3270–3280 (2020), DOI: 10.19595/j.cnki.1000-6753.tces.190722.
  • [16] Qiu Z.Y., Zhou Y.D., Liu Z.P., CPU ̧ GPU architecture node impedance matrix generation and node number optimization method, Power System Automation, vol. 44, no. 2, pp. 215–221 (2020).
  • [17] Rao H., Zhou Y.B., Xu S.K., Cai X.P., Xu Y.L., Ren C.L., Key technologies of ultra-high voltage hybrid LCC-VSC MTDC systems, in CSEE Journal of Power and Energy Systems, vol. 5, no. 3, pp. 365–373 Sept. (2019), DOI: 10.17775/CSEEJPES.
  • [18] Prieto-Araujo E., Bianchi F.D., Junyent-Ferre A., Methodology for droop control dynamic analysis of multiterminal VSC-HVDC grids for offshore wind farms [J], IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2476–2485 (2011), DOI: 10.1109/TPWRD.2011.2144625.
  • [19] Chen L., Huang Q., Jia M.M., Yuan X.D., Modeling and simulation analysis of hybrid AC/DC distribution network based on flexible DC Interconnection, Power System Technology, vol. 42, no. 5, pp. 1410–1416 (2018), DOI: 10.13335/j.1000-3673.pst.2017.2502.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af9f0517-cfb1-41b9-aef8-1e872be17821
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.