Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Workshop on CONCURRENCY, SPECIFICATION, and PROGRAMMING (CS&P 2015), (24; 28-30.09.2015, Rzeszów, Poland).
Języki publikacji
Abstrakty
Issues that are related to decision making that is based on dispersed knowledge are discussed in the paper. A dispersed decision-making system that was proposed in the earlier paper of the author is used in this paper. In the system the process of combining classifiers in coalitions is very important and negotiation is applied in the clustering process. The main aim of the article is to compare the results obtained using five different methods of conflict analysis in the system. All of these methods are used when the individual classifiers generate probability vectors over decision classes. The most popular methods are considered - a sum rule, a product rule, a median rule, a maximum rule and a minimum rule. An additional aim is to compare the results obtained with using a dispersed decision-making system with the results obtained when the prediction results are aggregated directly using the conflict analysis methods. Tests, that were performed on data from the UCI repository are presented in the paper. The best methods in a particular situation are also indicated. It was found that some methods do not generate satisfactory results when there are dummy agents in a dispersed data set. That is, there are undecided agents who assign the same probability value to many different decision values. Another conclusion was that the use of a dispersed system improves the efficiency of inference.
Wydawca
Czasopismo
Rocznik
Tom
Strony
353--370
Opis fizyczny
Bibliogr. 20 poz., tab., wykr.
Twórcy
autor
- Institute of Computer Science, University of Silesia, Będzińska 39, 41-200 Sosnowiec, Poland
Bibliografia
- [1] Cabrerizo FJ, Herrera-Viedma E, Pedrycz W. A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. Eur. J. Oper. Res., 2013;230(3):624–633. Available from: http://dx.doi.org/10.1016/j.ejor.2013.04.046.
- [2] Delimata P, Suraj Z. Feature Selection Algorithm for Multiple Classifier Systems: A Hybrid Approach. Fund. Informaticae 2008;85(1-4):97–110. Available from: http://dl.acm.org/citation.cfm?id=2365896.2365904.
- [3] Gatnar E. Multiple-model approach to classification and regression. PWN, Warsaw 2008.
- [4] Greco S, Matarazzo B, Słowiński R. Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res., 2001;129(1):1–47. Available from: http://dx.doi.org/10.1016/S0377-2217(00)00167-3.
- [5] Kittler J, Hatef M, Duin RPW, Matas J. On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998;20(3):226–239. Available from: http://dx.doi.org/10.1109/34.667881, doi:10.1109/34.667881.
- [6] Kuncheva L, Bezdek JC, Duin RPW. Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition, 2001;34(2):299–314. Available from: http://dx.doi.org/10.1016/S0031-3203(99)00223-X.
- [7] Kuncheva L. Combining pattern classifiers methods and algorithms. John Wiley & Sons 2004. ISBN: 978-0-471-21078-8.
- [8] Pawlak Z. On conflicts. Int. J. of Man-Machine Studies, 1984;21(2):127–134. Available from: http://dx.doi.org/10.1016/S0020-7373(84)80062-0, doi:10.1016/S0020-7373(84)80062-0.
- [9] Pawlak Z. An Inquiry Anatomy of Conflicts. Journal of Inform. Sciences, 1998;109(1-4):65–78. Available from: http://dx.doi.org/10.1016/S0020-0255(97)10072-X, doi:10.1016/S0020-0255(97)10072-X.
- [10] Przybyła-Kasperek M, Wakulicz-Deja A. Application of reduction of the set of conditional attributes in the process of global decision-making, Fund. Informaticae, 2013;122(4):327-355. Available from: http://dx.doi.org/10.3233/FI-2013-793, doi:10.3233/FI-2013-793.
- [11] Przybyła-Kasperek M, Wakulicz-Deja A. Global decision-making system with dynamically generated clusters, Inform. Sciences, 2014;270:172–191. doi:10.1016/j.ins.2014.02.076.
- [12] Przybyła-Kasperek M, Wakulicz-Deja A. A dispersed decision-making system - The use of negotiations during the dynamic generation of a systems structure. Inform. Sciences, 2014;288:194–219. Available from: http://dx.doi.org/10.1016/j.ins.2014.07.032, doi:10.1016/j.ins.2014.07.032.
- [13] Przybyła-Kasperek M, Wakulicz-Deja A. Global decision-making in multi-agent decision-making system with dynamically generated disjoint clusters. Applied Soft Computing, 2016;40:603–615. Available from: http://dx.doi.org/10.1016/j.asoc.2015.12.016, doi:10.1016/j.asoc.2015.12.016.
- [14] Schneeweiss C. Distributed decision making. Springer, Berlin (2003) ISBN: 978-3-540-40201-5, 978-3-642-07289-5. doi:10.1007/978-3-540-24724-1.
- [15] Schneeweiss C. Distributed decision making - a unified approach. Eur. J. Oper. Res., 2003;150(2):237–252. Available from: http://EconPapers.repec.org/RePEc:eee:ejores:v:150:y:2003:i:2:p:237-252.
- [16] Skowron A, Wang H, Wojna A, Bazan J. Multimodal Classification: Case Studies. T. Rough Sets, 2006 p. 224–239. Available from: http://dx.doi.org/10.1007/11847465_11, doi:10.1007/11847465_11.
- [17] Suraj Z, Gayar NE, Delimata P. A Rough Set Approach to Multiple Classifier Systems. Fund. Informaticae, 2006;72(1-3):393–406. Available from: http://content.iospress.com/articles/fundamenta-informaticae/fi72-1-3-29.
- [18] Wakulicz-Deja A, Przybyła-Kasperek M. Application of the method of editing and condensing in the process of global decision-making, Fund. Informaticae 2011;106(1):93–117. Available from: http://dl.acm.org/citation.cfm?id=1971700.1971705.
- [19] Wróblewski J. Ensembles of Classifiers Based on Approximate Reducts. Fund. Informaticae, 2001;47(3-4):351–360. Available from: http://dl.acm.org/citation.cfm?id=2372191.2372205.
- [20] http://www.ics.uci.edu/~mlearn/MLRepository.html.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af999793-7279-4b17-9b3c-24351f0d045f