PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A proposal to facilitate mandatory bridge load tests with artificial neural network analyses using a digital data aggregation platform

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an innovative concept of digital aggregation of data related to mandatory in-situ load tests of bridge structures. The proposed approach allows to manage various types of information regarding those experiments, in a way which is consistent with current good practises in BIM technology and digitalisation of construction industry. The proposed web platform will allow for vast improvements in decision-making process regarding admission of a given bridge for service, in proper analyses and even predictions of bridges mechanical response. Initial architecture of the system is introduced along with an appropriate literature review and the identification of key actors and their roles in the described information management process. To highlight the potential of the solution, two examples are shown. In both cases key advantages of digital aggregation are emphasised: the possibility to learn from previous analogical in-situ experiments, and the possibility to utilise modern machine learning algorithms and state-of-the-art open-source solutions.
Rocznik
Strony
69--78
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Assistant Prof.; PhD, Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Bielsko-Biala, Poland
  • MSc; Aspekt Laboratorium Sp. z o.o., ul. Chopina 96, 43-600 Jaworzno, Poland
  • PhD; Aspekt Laboratorium Sp. z o.o., ul. Chopina 96, 43-600 Jaworzno, Poland
Bibliografia
  • [1] GDDKiA, Zarządzenie Nr 35 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 12 sierpnia 2008 r. w sprawie wprowadzenia zaleceń dotyczących wykonywania badań pod próbnym obciążeniem drogowym obiektów mostowych (Regulation No. 35 of the General Director for National Roads and Motorways of 12 August 2008 on the introduction of recommendations for the performance of tests under road load test of bridges). GDDKiA, 2008. [Online]. Available: https://www.gddkia.gov.pl/userfiles/articles/z/zarzadzenia-generalnego-dyrektor_6335//documents/35z.pdf
  • [2] M. Łagoda. (2013). Potrzeba wykonywania badań konstrukcji mostowych pod próbnym obciążeniem statycznym i dynamicznym [The need to perform static and dynamic bridge load tests], presented at the Wroclaw bridge days seminar, Wroclaw, Poland, Nov. 20, 2013. [Online]. Available: https://www.google.pl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0ahUKEwjn08G3y_rZAhVLXCwKHVnvABUQFghdMAg&url=http%3A%2F%2Fwdm.pwr.wroc.pl%2Fsciagnij_plik%2Fpobierz%2Fwdm_2013_program_szczegolowy.pdf&usg=AOvVaw2x3G1r_-KCj3S9b4-pTv6U
  • [3] PN-S-10040. (1999). Obiekty mostowe: konstrukcje betonowe, żelbetowe i sprężone; Wymagania i badania. [Bridges: concrete, reinforced concrete, prestressed concrete structures; Requirements and testing.]. Polish Committee for Standardization, 1999. [Online]. Available: http://sklep.pkn.pl/pn-s-10040-1999p.html
  • [4] PN-S-10050. (1989). Obiekty mostowe, konstrukcje stalowe; Wymagania i badania. [Bridges, steel structures; Requirements and testing.]. Polish Committee for Standardization, 1989. [Online]. Available: http://sklep.pkn.pl/pn-s-10050-1989p.html
  • [5] J. Kania and K. Sorensen. (2018). A Static Pile Load Test on a Bored Pile Instrumented with Distributed Fibre Optic Sensors, Jun. 2018.
  • [6] P. Owerko, K. Winkelmann, and J. Górski. (Jul. 2020). Application of probabilistic tools to extend load test design of bridges prior to opening, Structure and Infrastructure Engineering, 16(7), 931-948, doi: 10.1080/15732479.2019.1676790.
  • [7] P. Kuras, Ł. Ortyl, T. Owerko, M. Salamak, and P. Łaziński. (Jan. 2020). GB-SAR in the Diagnosis of Critical City Infrastructure - A Case Study of a Load Test on the Long Tram Extradosed Bridge, Remote Sensing, 12(20), Art. no. 20, doi: 10.3390/rs12203361.
  • [8] E. O. L. Lantsoght, C. van der Veen, A. de Boer, and D. A. Hordijk. (Nov. 2017). State-of-the-art on load testing of concrete bridges, Engineering Structures, 150, 231-241, doi: 10.1016/j.engstruct.2017.07.050.
  • [9] E. O. L. Lantsoght, C. van der Veen, D. A. Hordijk, and A. de Boer. (Dec. 2017). Development of recommendations for proof load testing of reinforced concrete slab bridges, Engineering Structures, 152, 202-210, doi: 10.1016/j.engstruct.2017.09.018.
  • [10] PN-EN ISO 19650-1:2019-02. PKN, Feb. 01, 2019. [Online]. Available: https://sklep.pkn.pl/pn-en-iso-19650-1-2019-02e.html
  • [11] R. Bednarczyk et al.. (2020). BIM Standard PL. PZPB, [Online]. Available: https://www.uzp.gov.pl/__data/assets/pdf_file/0024/43449/BIM-Standard-wersja-opublikowana-2.0.pdf
  • [12] ISO 55000:2014 Asset management - Overview, principles and terminology’. Technical Committee: ISO/TC 251 Asset management, Jan. 2014. [Online]. Available: https://www.iso.org/standard/55088.html
  • [13] T. W. Kang and C. H. Hong. (Jun. 2015). A study on software architecture for effective BIM/GIS-based facility management data integration, Automation in Construction, 54, 25-38. doi: 10.1016/j.autcon.2015.03.019.
  • [14] Podpisano umowę na obwodnicę Zatora. Rusza projekt pilotażowy BIM: Generalna Dyrekcja Dróg Krajowych i Autostrad - Serwis informacyjny (A contract was signed for the bypass of Zator. The BIM pilot project is launched: General Directorate for National Roads and Motorways - Information service). https://www.gddkia.gov.pl/pl/a/36450/Podpisano-umowe-na-obwodnice-Zatora-Rusza-projekt-pilotazowy-BIM (accessed Apr. 19, 2021).
  • [15] S. Vitásek and P. Matějka. (Sep. 2017). Utilization of BIM for automation of quantity takeoffs and cost estimation in transport infrastructure construction projects in the Czech Republic, IOP Conf. Ser.: Mater. Sci. Eng., 236, 012110, doi: 10.1088/1757-899X/236/1/012110.
  • [16] S. Guerra de Oliveira, A. Tibaut, and G. Dell’Acqua. (2020). Airport Pavement Management Systems: An Open BIM Approach, 450-459. doi: 10.1007/978-3- 030-29779-4_44.
  • [17] ISO 19650-3:2020. Technical Committee: ISO/TC 59/SC 13 Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM). Accessed: Apr. 19, 2021. [Online]. Available: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/51/75109.html
  • [18] L. Nittmannová and M. Magura. (2016). Experimental Verification of Elastomeric Bearings According to STN EN 1337-3, Procedia Engineering, 156, 280-287, doi: 10.1016/j.proeng.2016.08.298.
  • [19] P. Łaziński. (2009). Procedura modelowania obiektów rzeczywistych w postaci pewnego typu konktrukcji mostowych [Procedure of modeling real objects in the form of a certain type of bridge structures]. Gliwice, Poland: Silesian University of Technology, [Online]. Available: http://delibra.bg.polsl.pl/Content/607/R-4601_JG.pdf
  • [20] P. Owerko. (Sep. 2016). Wybrane problemy przy montażu osłonek i splotów sprężających w kablo-betonowych obiektach mostowych (Selected problems in the assembly of sheaths and prestressing strands in post-tensioned concrete Bridges), Inżynieria i Budownictwo, 9, 477-479.
  • [21] P. Owerko and Ł. Ortyl. (2013). GPR identification of prestressing tendons in areas with high density of ordinary reinforcement, 13 th International Multidisciplinary Scientific GeoConferences, science and technologies in geology, exploration and mining. 2, 771-778, doi:10.5593/SGEM2013/BA1.V2/S05.012.
  • [22] P. Owerko and T. Owerko. (2020). Novel approach to inspections of as-built reinforcement in incrementally launched bridges by means of computer vision based point cloud data. IEEE Sensors Journal, 1-1, doi: 10.1109/JSEN.2020.3020132.
  • [23] J. Bień, M. Kużawa, and T. Kamiński. (Sep. 2015). Validation of numerical models of concrete box bridges based on load test results, Archives of Civil and Mechanical Engineering, 15(4), 1046-1060, doi: 10.1016/j.acme.2015.05.007.
  • [24] A. S. Nowak and T. Tharmabala. (Oct. 1988). Bridge Reliability Evaluation Using Load Tests, Journal of Structural Engineering, 114(10), 2268-2279, doi: 10.1061/(ASCE)0733-9445(1988)114:10(2268).
  • [25] T. Guo, D. M. Frangopol, and Y. Chen. (Dec. 2012). Fatigue reliability assessment of steel bridge details integrating weigh-in-motion data and probabilistic finite element analysis, Computers & Structures, 112-113, 245-257. doi: 10.1016/j.compstruc.2012.09.002.
  • [26] Z. Zong, X. Lin, and J. Niu. (Aug. 2015). Finite element model validation of bridge based on structural health monitoring-Part I: Response surface-based finite element model updating, Journal of Traffic and Transportation Engineering (English Edition), 2(4), 258-278, Aug. 2015, doi: 10.1016/j.jtte.2015.06.001.
  • [27] P. Owerko and K. Winkelmann. (2020). Improving the Procedure of Probabilistic Load Testing Design of Typical Bridges Based on Structural Response Similarities, Archives of Civil Engineering, LXVI(4), 325-342, 2020, doi: 10.24425/ACE.2020.135224.
  • [28] T. Siwowski, E. Michalak, D. Kaleta, E. Reizer, D. Macheta, and i inni. (Aug. 2018). Katalog typowych konstrukcji drogowych obiektów mostowych i przepustów’ (Catalog of typical road structures, bridges and culverts). Ministerstwo Infrastruktury, [Online]. Available: https://www.gov.pl/documents/905843/1047987/C1_Katalog_typowych_drogowych_obiektow_mostowych_i_przepust%C3%B3w.pdf/9be9e680-403e-75a4-7a10-4da285eb66fd
  • [29] A. G. Mohapatra, A. Khanna, D. Gupta, M. Mohanty, and V. H. C. de Albuquerque. (2020). An experimental approach to evaluate machine learning models for the estimation of load distribution on suspension bridge using FBG sensors and IoT, Computational Intelligence, n/a, no. n/a, doi: 10.1111/coin.12406.
  • [30] H.-N. Cho, Y.-M. Choi, and B.-C. Sho. (Nov. 1998). Field load testing and reliability-based integrity assessment of segmental PC box girder bridges before opening to traffic, Engineering Structures - ENG STRUCT, 20, 948-956, doi: 10.1016/S0141- 0296(97)00188-0.
  • [31] A. S. Nowak and T. Cho. (Dec. 2007). Prediction of the combination of failure modes for an arch bridge system, Journal of Constructional Steel Research, 63(12), 1561-1569, doi: 10.1016/j.jcsr.2007.05.004.
  • [32] P. Owerko, K. Winkelmann, and J. Górski. (Oct. 2019). Application of probabilistic tools to extend load test design of bridges prior to opening, Structure and Infrastructure Engineering [Article in Press], doi: 10.1080/15732479.2019.1676790.
  • [33] A. Géron. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd edition. Sebastopol, CA: O’Reilly Media.
  • [34] piotrowerko - Overview, GitHub. https://github.com/piotrowerko (accessed Apr. 20, 2021).
  • [35] Module: tf.keras | TensorFlow Core v2.4.1, TensorFlow. https://www.tensorflow.org/api_docs/python/tf/keras?hl=pl (accessed Apr. 20, 2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af96f2f7-8222-4be9-935c-19fa41a1b827
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.